
JavaScript Hello World Example

To insert JavaScript into an HTML page, you use

the <script> element. There are two ways to use the <script>

element in an HTML page:

 Embed JavaScript code directly into the HTML page.

 Reference an external JavaScript code file.

Embed JavaScript code in an HTML page

Placing JavaScript code inside the <script> element directly is not

recommended and should be used only for proof of concept or

testing purposes.

The JavaScript code in the <script> element is interpreted from top

to bottom. For example:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <title>JavaScript Hello World Example</title>

 <script>

 alert('Hello, World!');

 </script>

</head>

<body>

</body>

</html>

In the <script> element, we use the alert() function to display

the Hello, World! message.

Include an external JavaScript file

To include a JavaScript from an external file:

 First, create a file whose extension is .js e.g., app.js and place

it in the js subfolder. Note that placing the JavaScript file in

the js folder is not required however it is a good practice.

https://www.javascripttutorial.net/javascript-bom/javascript-alert/

 Then, use the URL to the JavasScript source code file in

the src attribute of the <script> element.

The following shows the contents of the app.js file:

alert('Hello, World!');

And the following shows the helloworld.html file:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <title>JavaScript Hello World Example</title>

 <script src="js/app.js"></script>

</head>

<body>

</body>

</html>

If you launch the helloworld.html file in the web browser, you will

see an alert that displays the Hello, World! message.

When you have multiple JavaScript files on a page, the JavaScript

engine interprets the files in the order that they appear. For

example:

<script src="js/service.js"></script>

<script src="js/app.js"></script>

In this example, JavaScript engine will interpret the service.js and

the app.js files in sequence. It completes interpreting

the service.js file first before interpreting the app.js file.

For the page that includes many external JavaScript files, the blank

page is shown during the page rendering phase.

To avoid this, you include the JavaScript file just before

the </body> tag as shown in this example:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <title>JavaScript Hello World Example</title>

</head>

<body>

 <!-- end of page content here-->

 <script src="js/service.js"></script>

 <script src="js/app.js"></script>

</body>

</html>

The async and defer attributes

To change how the browser load and execute JavaScript files, you

use one of two attributes of the <script> element async and defer.

These attributes take effect only on the external script files.

The async attribute instructs the web browser to execute the

JavaScript file asynchronously. The async attribute does not

guarantee the script files to execute in the order that they appear.

For example:

<script async src="service.js"></script>

<script async src="app.js"></script>

The app.js file might execute before the service.js file. Therefore,

you must ensure that there is no dependency between them.

The defer attribute requests the web browser to execute the script

file after the HTML document has been parsed.

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <title>JavaScript defer demonstration</title>

 <script defer src="defer-script.js"></script>

</head>

<body>

</body>

</html>

Even though we place the <script> element in the <head> section,

the script will wait for the browser to receive the closing

tag <html> to start executing.

Summary

 Use <script> element to include a JavaScript file in a HTML

page.

 The async attribute of the <script> element instructs the web

browser to fetch the JavaScript file in parallel and then parse

and execute as soon as the JavaScript file is available.

 The defer attribute of the <script> element allows the web

browser to execute the JavaScript file after the document has

been parsed.

