
 7من 1الصفحة

JavaScript Data Types

Summary: in this lesson, you will learn about the JavaScript data

types and their unique characteristics.

JavaScript has the primitive data types:

1. null

2. undefined

3. boolean

4. number

5. string

6. symbol – available from ES2015

7. bigint – available from ES2020

and a complex data type object.

JavaScript is a dynamically typed language. It means that

a variable doesn’t associate with a type. In other words, a variable

can hold a value of different types. For example:

let counter = 120; // counter is a number

counter = false; // counter is now a boolean

counter = "foo"; // counter is now a string

To get the current type of the value that the variable stores, you use

the typeof operator:

let counter = 120;

console.log(typeof(counter)); // "number"

counter = false;

console.log(typeof(counter)); // "boolean"

counter = "Hi";

console.log(typeof(counter)); // "string"

Output:

"number"

"boolean"

"string"

https://www.javascripttutorial.net/javascript-data-types/#null
https://www.javascripttutorial.net/javascript-data-types/#undefined
https://www.javascripttutorial.net/javascript-data-types/#boolean
https://www.javascripttutorial.net/javascript-data-types/#number
https://www.javascripttutorial.net/javascript-data-types/#string
https://www.javascripttutorial.net/javascript-data-types/#symbol
https://www.javascripttutorial.net/es-next/javascript-bigint/
https://www.javascripttutorial.net/javascript-data-types/#object
https://www.javascripttutorial.net/javascript-variables/
https://www.javascripttutorial.net/javascript-typeof/

 7من 2الصفحة

The undefined type

The undefined type is a primitive type that has only one

value undefined. By default, when a variable is declared but not

initialized, it is assigned the value of undefined.

Consider the following example:

let counter;

console.log(counter); // undefined

console.log(typeof counter); // undefined

In this example, the counter is a variable. Since counter hasn’t been

initialized, it is assigned the value undefined. The type of counter is

also undefined.

It’s important to note that the typeof operator also

returns undefined when you call it on a variable that hasn’t been

declared:

console.log(typeof undeclaredVar); // undefined

The null type

The null type is the second primitive data type that also has only

one value null. For example:

let obj = null;

console.log(typeof obj); // object

JavaScript defines that null is equal to undefined as follows:

console.log(null == undefined); // true

The number type

JavaScript uses the number type to represent both integer and

floating-point numbers.

The following statement declares a variable and initializes its value

with an integer:

 7من 3الصفحة

let num = 100;

To represent a floating-point number, you include a decimal point

followed by at least one number. For example:

let price= 12.5;

let discount = 0.05;

Note that JavaScript automatically converts a floating-point number

into an integer number if the number appears to be a whole

number.

The reason is that Javascript always wants to use less memory

since a floating-point value uses twice as much memory as an

integer value. For example:

let price = 200.00; // interpreted as an integer 200

To get the range of the number type, you

use Number.MIN_VALUE and Number.MAX_VALUE. For

example:

console.log(Number.MAX_VALUE); // 1.7976931348623157e+308

console.log(Number.MIN_VALUE); // 5e-324

Also, you can use Infinity and -Infinity to represent the infinite

number. For example:

console.log(Number.MAX_VALUE + Number.MAX_VALUE); //

Infinity

console.log(-Number.MAX_VALUE - Number.MAX_VALUE); // -

Infinity

NaN

NaN stands for Not a Number. It is a special numeric value that

indicates an invalid number. For example, the division of a string by

a number returns NaN:.

console.log('a'/2); // NaN;

 7من 4الصفحة

The NaN has two special characteristics:

 Any operation with NaN returns NaN.

 The NaN does not equal any value, including itself.

Here are some examples:

console.log(NaN/2); // NaN

The string type

In JavaScript, a string is a sequence of zero or more characters. A

string literal begins and ends with either a single quote(') or a double

quote (").

A string that begins with a double quote must end with a double

quote. Likewise, a string that begins with a single quote must also

end with a single quote:

let greeting = 'Hi';

let message = "Bye";

If you want to single quote or double quotes in a literal string, you

need to use the backslash to escape it. For example:

let message = 'I\'m also a valid string'; // use \ to

escape the single quote (')

JavaScript strings are immutable. This means that it cannot be

modified once created. However, you can create a new string from

an existing string. For example:

let str = 'JavaScript';

str = str + ' String';

In this example:

 First, declare the str variable and initialize it to a string

of 'JavaScript'.

 7من 5الصفحة

 Second, use the + operator to combine 'JavaScript' with '

String' to make its value as 'Javascript String'.

Behind the scene, the JavaScript engine creates a new string that

holds the new string 'JavaScript String' and destroys the original

strings 'JavaScript' and ' String'.

The boolean type

The boolean type has two literal values: true and false in lowercase.

The following example declares two variables that hold the boolean

values.

let inProgress = true;

let completed = false;

console.log(typeof completed); // boolean

JavaScript allows values of other types to be converted into boolean

values of true or false.

To convert a value of another data type into a boolean value, you

use the Boolean() function. The following table shows the

conversion rules:

Type true false

string non-empty string empty string

number non-zero number and Infinity 0, NaN

object non-null object null

undefined undefined

For example:

console.log(Boolean('Hi'));// true

console.log(Boolean('')); // false

console.log(Boolean(20)); // true

https://www.javascripttutorial.net/javascript-boolean/

 7من 6الصفحة

console.log(Boolean(Infinity)); // true

console.log(Boolean(0)); // false

console.log(Boolean({foo: 100})); // true on non-empty

object

console.log(Boolean(null));// false

The bigint type

The bigint type represents the whole numbers that are larger than

253 – 1. To form a bigint literal number, you append the letter n at

the end of the number:

let pageView = 9007199254740991n;

console.log(typeof(pageView)); // 'bigint'

The object type

In JavaScript, an object is a collection of properties, where each

property is defined as a key-value pair.

The following example defines an empty object using the object

literal syntax:

let emptyObject = {};

The following example defines the person object with two

properties: firstName and lastName.

let person = {

 firstName: 'John',

 lastName: 'Doe'

};

A property name of an object can be any string. You can use quotes

around the property name if it is not a valid identifier.

For example, if the person object has a property first-name, you

must place it in the quotes such as "first-name".

A property of an object can hold an object. For example:

let contact = {

https://www.javascripttutorial.net/home/javascript-objects/
https://www.javascripttutorial.net/home/javascript-object-properties/

 7من 7الصفحة

 firstName: 'John',

 lastName: 'Doe',

 email: 'john.doe@example.com',

 phone: '(408)-555-9999',

 address: {

 building: '4000',

 street: 'North 1st street',

 city: 'San Jose',

 state: 'CA',

 country: 'USA'

 }

}

The contact object has the firstName, lastName, email, phone,

and address properties.

The address property itself holds an object that

has building, street, city, state, and country properties.

To access a object’s property, you can use

The dot notation (.)

The array-like notation ([]).

The following example uses the dot notation (.) to access

the firstName and lastName properties of the contact object.

console.log(contact.firstName);

console.log(contact.lastName);

If you reference a property that does not exist, you’ll get

an undefined value. For example:

console.log(contact.age); // undefined

The following example uses the array-like notation to access

the email and phone properties of the contact object.

console.log(contact['phone']); // '(408)-555-9999'

console.log(contact['email']); // 'john.doe@example.com'

