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Course Structure
 Lecture ( Monday& Tuesday) 
 Time: 12:30-14:00
Microsoft Teams Code (goi2d67)
(Lectures, labs, announcements, References):
 Grading :
◦ 25%  Midterm exam.
◦ 25% Assignments
◦ 25% Group Project (Groups of two).
◦ 25% Final Exam.
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Course References 
Our Course Main References:

• Jakarta EE Tutorial

• Java EE to Jakarta EE 10 Recipes: A Problem-Solution Approach for Enterprise Java (2022)
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key course objectives
1) Master Core Jakarta EE Concepts: Understand the fundamental architecture and 

components of Jakarta EE, including Servlets, JSP, JSF, and Enterprise JavaBeans (EJB).

2) Develop RESTful Web Services: Build and deploy scalable RESTful APIs using Jakarta RESTful 
Web Services (JAX-RS), with advanced features like exception handling, filters, and security.

3) Implement Dependency Injection and Persistence: Leverage Contexts and Dependency 
Injection (CDI) and Jakarta Persistence (JPA) to manage beans and database interactions in 
enterprise applications.

4) Ensure Application Security and Transaction Management: Apply Jakarta EE’s security 
framework for authentication, authorization, and manage transactions using declarative and 
programmatic approaches.

5) Deploy Cloud-Native Applications: Utilize Jakarta EE to build, containerize, and deploy 
microservice-based applications in cloud environments, incorporating tools like Docker and 
Kubernetes.
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Lecture Agenda
JSON Binding in the Jakarta EE Platform
Overview of the JSON Binding API
Creating a jasonb Instance
Using the Default Mapping
Using Customizations
Using Annotations
Running the jsonbbasics Example Application
Components of the jsonbbasics Example Application
Running the jsonbbasics Example Application

LECTURE 7 6



Jakarta JSON

JSON is a data exchange format widely used in web services and other connected applications. 

 The Jakarta JSON Binding specification provides a standard binding layer (metadata and 
runtime) between Java classes and JSON documents.

 One Jakarta JSON Binding reference implementation is Yasson, which is developed through 
Eclipse.org and is included as part of GlassFish Server.
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JSON Binding in the Jakarta EE Platform
 Jakarta EE includes support for the Jakarta JSON Binding spec, which provides an API that can 
serialize Java objects to JSON documents and deserialize JSON documents to Java objects. 

Jakarta JSON Binding contains the following packages:
 The jakarta.json.bind package 
 The jakarta.json.bind.adapter 
 The jakarta.json.bind.annotation package 
 The jakarta.json.bind.config package 
 The jakarta.json.bind.serializer package 
 The jakarta.json.bind.spi package
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Main Classes and Interfaces in jakarta.json.bind

LECTURE 7 9



Main Classes and Interfaces in jakarta.json.bind.config
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Main Classes and Interfaces in jakarta.json.bind.serializer
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What is Serialization in Java?
 Serialization in Java is the concept of representing an object’s state as a byte stream.

 The byte stream has all the information about the object. 

Usually used in Hibernate, JMS, JPA, and EJB, serialization in Java helps transport the code from 
one JVM to another and then de-serialize it there.

 Deserialization is the exact opposite process of serialization where the byte data type stream is 
converted back to an object in the memory. 

 The best part about these mechanisms is that both are JVM-independent, meaning you 
serialize on one JVM and de-serialize on another.
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What are the Advantages of Serialization?

Used for marshaling (traveling the state of an object on the network)

 To persist or save an object’s state

 JVM independent

 Easy to understand and customize
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Points to Note About Serialization in Java?
 Serialization is a marker interface with no method or data member

 You can serialize an object only by implementing the serializable interface

 All the fields of a class must be serializable

 The child class doesn’t have to implement the Serializable interface, if the parent class does

 The serialization process only saves non-static data members, but not static or transient data 
members

 By default, the String and all wrapper classes implement the Serializable interface
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Example for Serialization in Java
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Overview of the JSON Binding API
 This section provides basic instructions for using the Jakarta JSON Binding client API.

 The instructions provide a basis for understanding the Running the jsonbbasics Example 
Application.
oCreating a jasonb Instance
oUsing the Default Mapping
oUsing Customizations
oUsing Annotations
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Creating a jasonb Instance
 A jsonb instance provides access to methods for binding objects to JSON. 

 A single jsonb instance is required for most applications. 

 A jsonb instance is created using the JsonbBuilder interface, which is a client’s entry point to 
the JSON Binding API. For example:

Jsonb jsonb = JsonbBuilder.create();
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Using the Default Mapping
 Jakarta JSON Binding provides default mappings for serializing and deserializing basic Java and 
Java SE types as well Java date and time classes. 

 To use the default mappings and mapping behavior, create a josnb instance and use the toJson 
method to serialize to JSON and the fromJson method to deserialize back to an object. 

The following example binds a simple Person object that contains a single name field
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Using Customizations
 Jakarta JSON Binding supports many ways to customize the default mapping behavior.

 For runtime customizations, a JsonbConfig configuration object is used when creating the 
jsonbinstance. 

 The JsonbConfig class supports many configuration options and also includes advanced options 
for binding custom types.

 For advanced options, see the JsonbAdapter interface and the JsonbSerializer and 
JsonbDeserializer interfaces.

 The following example creates a configuration object that sets the FORMATTING property to 
specify whether or not the serialized JSON data is formatted with linefeeds and indentation.
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Using Annotations
 Jakarta JSON Binding includes many annotations that can be used at compile time to customize 
the default mapping behavior. 

The following example uses the @JsonbProperty annotation to change the name field to 
person-name when the object is serialized to JSON.
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Running the jsonbbasics Example Application
 This section describes how to build and run the jsonbbasics example application. This example 
is a web application that demonstrates how to serialize an object to JSON and how to deserialize 
JSON to an object.

 The jsonbbasics example application is in the jakartaeeexamples/tutorial/web/jsonb/ 
jsonbbasics directory.
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Components of the jsonbbasics Example Application
The jsonbbasics example application contains the following files.

1. Two Jakarta Faces pages.
◦ The index.xhtml page contains a form to collect data that is used to create a Person object.
◦ The jsongenerated.xhtml page contains a text area that displays the data in JSON format.

2. The JsonbBean.java managed bean, which is a session-scoped managed bean that stores the 
data from the form and directs the navigation between the Facelets pages. This file contains 
code that uses the JSON Binding API.
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Running the jsonbbasics Example Application
 This section describes how to run the jsonbbasics example application from the command line using 
Maven.
 To run the jsonbbasics example application using Maven:
 Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).
 In a terminal window, go to: jakartaee-examples/tutorial/web/jsonb/jsonbbasics

Enter the following command to deploy the application:
 mvn install

Open a web browser window and enter the following address:
 http://localhost:8080/jsonbbasics/

 Enter data on form and click Serialize to JSON to submit the form. The following page shows the 
JSON format of the object data.

 Click Deserialize JSON. The index page displays and contains the fields populated from the object 
data.
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Questions?
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