
Web Applications Developments

ITWT413
LECTURE 7: JAKARTA EE CORE PROFILE

DR. HALA SHAARI

Course Structure
 Lecture (Monday& Tuesday)
 Time: 12:30-14:00
Microsoft Teams Code (goi2d67)
(Lectures, labs, announcements, References):
 Grading :
◦ 25% Midterm exam.
◦ 25% Assignments
◦ 25% Group Project (Groups of two).
◦ 25% Final Exam.

LECTURE 7 2

Course References
Our Course Main References:

• Jakarta EE Tutorial

• Java EE to Jakarta EE 10 Recipes: A Problem-Solution Approach for Enterprise Java (2022)

LECTURE 7 3

key course objectives
1) Master Core Jakarta EE Concepts: Understand the fundamental architecture and

components of Jakarta EE, including Servlets, JSP, JSF, and Enterprise JavaBeans (EJB).

2) Develop RESTful Web Services: Build and deploy scalable RESTful APIs using Jakarta RESTful
Web Services (JAX-RS), with advanced features like exception handling, filters, and security.

3) Implement Dependency Injection and Persistence: Leverage Contexts and Dependency
Injection (CDI) and Jakarta Persistence (JPA) to manage beans and database interactions in
enterprise applications.

4) Ensure Application Security and Transaction Management: Apply Jakarta EE’s security
framework for authentication, authorization, and manage transactions using declarative and
programmatic approaches.

5) Deploy Cloud-Native Applications: Utilize Jakarta EE to build, containerize, and deploy
microservice-based applications in cloud environments, incorporating tools like Docker and
Kubernetes.

LECTURE 7 4

LECTURE 7 5

Basic Platform

Resource Creation

Injection

Packaging

Jakarta EE Core Profile

Jakarta CDI Lite

Jakarta REST

Jakarta JSON

Jakarta EE Web Profile

Jakarta CDI Full

Jakarta Validation

Jakarta Security

Jakarta Servlets

Jakarta Faces

Jakarta WebSocket

Jakarta Persistence

Jakarta Enterprise Beans Lite

Jakarta EE Platform

Jakarta Mail

Jakarta Messaging

Jakarta Batch

Jakarta EE Tutorial- Structure

Lecture Agenda
JSON Binding in the Jakarta EE Platform
Overview of the JSON Binding API
Creating a jasonb Instance
Using the Default Mapping
Using Customizations
Using Annotations
Running the jsonbbasics Example Application
Components of the jsonbbasics Example Application
Running the jsonbbasics Example Application

LECTURE 7 6

Jakarta JSON

JSON is a data exchange format widely used in web services and other connected applications.

 The Jakarta JSON Binding specification provides a standard binding layer (metadata and
runtime) between Java classes and JSON documents.

 One Jakarta JSON Binding reference implementation is Yasson, which is developed through
Eclipse.org and is included as part of GlassFish Server.

LECTURE 7 7

JSON Binding in the Jakarta EE Platform
 Jakarta EE includes support for the Jakarta JSON Binding spec, which provides an API that can
serialize Java objects to JSON documents and deserialize JSON documents to Java objects.

Jakarta JSON Binding contains the following packages:
 The jakarta.json.bind package
 The jakarta.json.bind.adapter
 The jakarta.json.bind.annotation package
 The jakarta.json.bind.config package
 The jakarta.json.bind.serializer package
 The jakarta.json.bind.spi package

LECTURE 7 8

Main Classes and Interfaces in jakarta.json.bind

LECTURE 7 9

Main Classes and Interfaces in jakarta.json.bind.config

LECTURE 7 10

Main Classes and Interfaces in jakarta.json.bind.serializer

LECTURE 7 11

What is Serialization in Java?
 Serialization in Java is the concept of representing an object’s state as a byte stream.

 The byte stream has all the information about the object.

Usually used in Hibernate, JMS, JPA, and EJB, serialization in Java helps transport the code from
one JVM to another and then de-serialize it there.

 Deserialization is the exact opposite process of serialization where the byte data type stream is
converted back to an object in the memory.

 The best part about these mechanisms is that both are JVM-independent, meaning you
serialize on one JVM and de-serialize on another.

LECTURE 7 12

What are the Advantages of Serialization?

Used for marshaling (traveling the state of an object on the network)

 To persist or save an object’s state

 JVM independent

 Easy to understand and customize

LECTURE 7 13

Points to Note About Serialization in Java?
 Serialization is a marker interface with no method or data member

 You can serialize an object only by implementing the serializable interface

 All the fields of a class must be serializable

 The child class doesn’t have to implement the Serializable interface, if the parent class does

 The serialization process only saves non-static data members, but not static or transient data
members

 By default, the String and all wrapper classes implement the Serializable interface

LECTURE 7 14

Example for Serialization in Java

LECTURE 7 15

Overview of the JSON Binding API
 This section provides basic instructions for using the Jakarta JSON Binding client API.

 The instructions provide a basis for understanding the Running the jsonbbasics Example
Application.
oCreating a jasonb Instance
oUsing the Default Mapping
oUsing Customizations
oUsing Annotations

LECTURE 7 16

Creating a jasonb Instance
 A jsonb instance provides access to methods for binding objects to JSON.

 A single jsonb instance is required for most applications.

 A jsonb instance is created using the JsonbBuilder interface, which is a client’s entry point to
the JSON Binding API. For example:

Jsonb jsonb = JsonbBuilder.create();

LECTURE 7 17

Using the Default Mapping
 Jakarta JSON Binding provides default mappings for serializing and deserializing basic Java and
Java SE types as well Java date and time classes.

 To use the default mappings and mapping behavior, create a josnb instance and use the toJson
method to serialize to JSON and the fromJson method to deserialize back to an object.

The following example binds a simple Person object that contains a single name field

LECTURE 7 18

Using Customizations
 Jakarta JSON Binding supports many ways to customize the default mapping behavior.

 For runtime customizations, a JsonbConfig configuration object is used when creating the
jsonbinstance.

 The JsonbConfig class supports many configuration options and also includes advanced options
for binding custom types.

 For advanced options, see the JsonbAdapter interface and the JsonbSerializer and
JsonbDeserializer interfaces.

 The following example creates a configuration object that sets the FORMATTING property to
specify whether or not the serialized JSON data is formatted with linefeeds and indentation.

LECTURE 7 19

Using Annotations
 Jakarta JSON Binding includes many annotations that can be used at compile time to customize
the default mapping behavior.

The following example uses the @JsonbProperty annotation to change the name field to
person-name when the object is serialized to JSON.

LECTURE 7 20

Running the jsonbbasics Example Application
 This section describes how to build and run the jsonbbasics example application. This example
is a web application that demonstrates how to serialize an object to JSON and how to deserialize
JSON to an object.

 The jsonbbasics example application is in the jakartaeeexamples/tutorial/web/jsonb/
jsonbbasics directory.

LECTURE 7 21

Components of the jsonbbasics Example Application
The jsonbbasics example application contains the following files.

1. Two Jakarta Faces pages.
◦ The index.xhtml page contains a form to collect data that is used to create a Person object.
◦ The jsongenerated.xhtml page contains a text area that displays the data in JSON format.

2. The JsonbBean.java managed bean, which is a session-scoped managed bean that stores the
data from the form and directs the navigation between the Facelets pages. This file contains
code that uses the JSON Binding API.

LECTURE 7 22

Running the jsonbbasics Example Application
 This section describes how to run the jsonbbasics example application from the command line using
Maven.
 To run the jsonbbasics example application using Maven:
 Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).
 In a terminal window, go to: jakartaee-examples/tutorial/web/jsonb/jsonbbasics

Enter the following command to deploy the application:
 mvn install

Open a web browser window and enter the following address:
 http://localhost:8080/jsonbbasics/

 Enter data on form and click Serialize to JSON to submit the form. The following page shows the
JSON format of the object data.

 Click Deserialize JSON. The index page displays and contains the fields populated from the object
data.

LECTURE 7 23

Questions?

LECTURE 7 24

	Web Applications Developments� �ITWT413
	Course Structure
	Course References
	key course objectives
	Slide Number 5
	Lecture Agenda
	Jakarta JSON
	JSON Binding in the Jakarta EE Platform
	Main Classes and Interfaces in jakarta.json.bind
	Main Classes and Interfaces in jakarta.json.bind.config
	Main Classes and Interfaces in jakarta.json.bind.serializer
	What is Serialization in Java?
	What are the Advantages of Serialization?
	Points to Note About Serialization in Java?
	Example for Serialization in Java
	Overview of the JSON Binding API
	Creating a jasonb Instance
	Using the Default Mapping
	Using Customizations
	Using Annotations
	Running the jsonbbasics Example Application
	Components of the jsonbbasics Example Application
	Running the jsonbbasics Example Application
	Slide Number 24

