
Web Applications Developments

ITWT413
LECTURE 6: JAKARTA EE CORE PROFILE

DR. HALA SHAARI

Course Structure
 Lecture (Monday& Tuesday)
 Time: 12:30-14:00
Microsoft Teams Code (goi2d67)
(Lectures, labs, announcements, References):
 Grading :
◦ 25% Midterm exam.
◦ 25% Assignments
◦ 25% Group Project (Groups of two).
◦ 25% Final Exam.

LECTURE 6 2

Course References
Our Course Main References:

• Jakarta EE Tutorial

• Java EE to Jakarta EE 10 Recipes: A Problem-Solution Approach for Enterprise Java (2022)

LECTURE 6 3

key course objectives
1) Master Core Jakarta EE Concepts: Understand the fundamental architecture and

components of Jakarta EE, including Servlets, JSP, JSF, and Enterprise JavaBeans (EJB).

2) Develop RESTful Web Services: Build and deploy scalable RESTful APIs using Jakarta RESTful
Web Services (JAX-RS), with advanced features like exception handling, filters, and security.

3) Implement Dependency Injection and Persistence: Leverage Contexts and Dependency
Injection (CDI) and Jakarta Persistence (JPA) to manage beans and database interactions in
enterprise applications.

4) Ensure Application Security and Transaction Management: Apply Jakarta EE’s security
framework for authentication, authorization, and manage transactions using declarative and
programmatic approaches.

5) Deploy Cloud-Native Applications: Utilize Jakarta EE to build, containerize, and deploy
microservice-based applications in cloud environments, incorporating tools like Docker and
Kubernetes.

LECTURE 6 4

Lecture Agenda
 Building RESTful Web Services with Jakarta REST
What Are RESTful Web Services?
Creating a RESTful Root Resource Class
Developing RESTful Web Services with Jakarta REST
Overview of a Jakarta REST Application
The @Path Annotation and URI Path Templates
Responding to HTTP Methods and Requests
Using @Consumes and @Produces to Customize Requests and Responses
Extracting Request Parameters
Configuring Jakarta REST Applications
Example Applications for Jakarta REST

LECTURE 6 5

Required Software
The following software is required to run the examples

• Java Platform, Standard Edition

• Eclipse Glassfish Server

• Jakarta EE Tutorial Examples

• Apache NetBeans IDE

• Apache Maven

• Instructions from page 11 to page17 from Jakarta EE Tutorial tells you everything you need to
know to install, build, and run the tutorial examples

LECTURE 6 6

LECTURE 6 7

Basic Platform

Resource Creation

Injection

Packaging

Jakarta EE Core Profile

Jakarta CDI Lite

Jakarta REST

Jakarta JSON

Jakarta EE Web Profile

Jakarta CDI Full

Jakarta Validation

Jakarta Security

Jakarta Servlets

Jakarta Faces

Jakarta WebSocket

Jakarta Persistence

Jakarta Enterprise Beans Lite

Jakarta EE Platform

Jakarta Mail

Jakarta Messaging

Jakarta Batch

Jakarta EE Tutorial- Structure

What Are RESTful Web Services?
•RESTful web services are loosely coupled, lightweight web services that are particularly well suited for
creating APIs for clients spread out across the internet.

•Representational State Transfer (REST) is an architectural style of client-server application centered
around the transfer of representations of resources through requests and responses. In the REST
architectural style, data and functionality are considered resources and are accessed using Uniform
Resource Identifiers (URIs), typically links on the Web. The resources are represented by documents
and are acted upon by using a set of simple, well-defined operations.

•For example, a REST resource might be the current weather conditions for a city. The representation
of that resource might be an XML document, an image file, or an HTML page. A client might retrieve a
particular representation, modify the resource by updating its data, or delete the resource entirely.

•The REST architectural style is designed to use a stateless communication protocol, typically HTTP. In
the REST architecture style, clients and servers exchange representations of resources by using a
standardized interface and protocol.

LECTURE 6 8

Principles for to be simple, lightweight,
and fast RESTful applications (1)

•Resource identification through URI: A RESTful web service exposes a set of resources that
identify the targets of the interaction with its clients. Resources are identified by URIs, which
provide a global addressing space for resource and service discovery.

•Uniform interface: Resources are manipulated using a fixed set of four create, read, update,
delete operations: PUT, GET, POST, and DELETE. PUT creates a new resource, which can be then
deleted by using DELETE. GET retrieves the current state of a resource in some representation.
POST transfers a new state onto a resource.

LECTURE 6 9

Principles for to be simple, lightweight,
and fast RESTful applications (2)

•Self-descriptive messages: Resources are decoupled from their representation so that their
content can be accessed in a variety of formats, such as HTML, XML, plain text, PDF, JPEG, JSON,
and other document formats. Metadata about the resource is available and used, for example,
to control caching, detect transmission errors, negotiate the appropriate representation format,
and perform authentication or access control.

•Stateful interactions through links: Every interaction with a resource is stateless; that is, request
messages are self-contained. Stateful interactions are based on the concept of explicit state
transfer. Several techniques exist to exchange state, such as URI rewriting, cookies, and hidden
form fields. State can be embedded in response messages to point to valid future states of the
interaction.

LECTURE 6 10

Creating a RESTful Root Resource Class
•Root resource classes are "plain old Java objects" (POJOs) that are either annotated with @Path
or have at least one method annotated with @Path or a request method designator, such as
@GET, @PUT, @POST, or @DELETE.

• Resource methods are methods of a resource class annotated with a request method
designator.

LECTURE 6 11

LECTURE 6 12

Developing RESTful Web Services with
Jakarta REST
This section explains how to use Jakarta REST to annotate Java classes to create RESTful web
services.

•The Jakarta REST API uses Java programming language annotations to simplify the development
of RESTful web services.

•Developers decorate Java programming language class files with Jakarta REST annotations to
define resources and the actions that can be performed on those resources.

•Jakarta REST annotations are runtime annotations; therefore, runtime reflection will generate
the helper classes and artifacts for the resource.

•A Jakarta EE application archive containing Jakarta REST resource classes will have the resources
configured, the helper classes and artifacts generated, and the resource exposed to clients by
deploying the archive to a Jakarta EE server.

LECTURE 6 13

Summary of Jakarta REST Annotations
lists (1)

LECTURE 6 14

Summary of Jakarta REST Annotations
lists (2)

LECTURE 6 15

Summary of Jakarta REST Annotations
lists (3)

LECTURE 6 16

LECTURE 6 17

Overview of a Jakarta REST Application

Jakarta REST Application Explanation
•The @Path annotation’s value is a relative URI path. In the preceding example, the Java class will
be hosted at the URI path /helloworld. This is an extremely simple use of the @Path annotation,
with a static URI path. Variables can be embedded in the URIs. URI path templates are URIs with
variables embedded within the URI syntax.

•The @GET annotation is a request method designator, along with @POST, @PUT, @DELETE, and
@HEAD, defined by Jakarta REST and corresponding to the similarly named HTTP methods. In
the example, the annotated Java method will process HTTP GET requests. The behavior of a
resource is determined by the HTTP method to which the resource is responding.

•The @Produces annotation is used to specify the MIME media types a resource can produce and
send back to the client. In this example, the Java method will produce representations identified
by the MIME media type "text/html".

•The @Consumes annotation is used to specify the MIME media types a resource can consume
that were sent by the client.

LECTURE 6 18

The @Path Annotation and URI Path
Templates

•The @Path annotation identifies the URI path template to which the resource responds and is
specified at the class or method level of a resource.

• The @Path annotation’s value is a partial URI path template relative to the base URI of the
server on which the resource is deployed, the context root of the application, and the URL
pattern to which the Jakarta REST runtime responds.

•URI path templates are URIs with variables embedded within the URI syntax. These variables are
substituted at runtime in order for a resource to respond to a request based on the substituted
URI. Variables are denoted by braces ({ and }).

•By default, the URI variable must match the regular expression "[^/]+?". This variable may be
customized by specifying a different regular expression after the variable name

LECTURE 6 19

Responding to HTTP Methods and
Requests

•The behavior of a resource is determined by the HTTP methods (typically, GET, POST, PUT, or DELETE)
to which the resource is responding.

1) The Request Method Designator Annotations.
Request method designator annotations are runtime annotations, defined by Jakarta REST, that correspond to
the similarly named HTTP methods. Within a resource class file, HTTP methods are mapped to Java
programming language methods by using the request method designator annotations. The behavior of a
resource is determined by which HTTP method the resource is responding to. Jakarta REST defines a set of
request method designators for the common HTTP methods GET, POST, PUT, DELETE, and HEAD; you can also
create your own custom request method designators.

2) Using Entity Providers to Map HTTP Response and Request Entity Bodies.
Entity providers supply mapping services between representations and their associated Java types. The two
types of entity providers are MessageBodyReader and MessageBodyWriter. For HTTP requests, the
MessageBodyReader is used to map an HTTP request entity body to method parameters. On the response side,
a return value is mapped to an HTTP response entity body by using a MessageBodyWriter. If the application
needs to supply additional metadata, such as HTTP headers or a different status code, a method can return a
Response that wraps the entity and that can be built by using Response.ResponseBuilder.

LECTURE 6 20

Using @Consumes and @Produces to
Customize Requests and Responses

•The information sent to a resource and then passed back to the client is specified as a MIME
media type in the headers of an HTTP request or response. You can specify which MIME media
types of representations a resource can respond to or produce by using the following
annotations:
◦ jakarta.ws.rs.Consumes
◦ jakarta.ws.rs.Produces

•By default, a resource class can respond to and produce all MIME media types of
representations specified in the HTTP request and response headers.

LECTURE 6 21

Extracting Request Parameters
•Parameters of a resource method may be annotated with parameter-based annotations to
extract information from a request. A previous example presented the use of the @PathParam
parameter to extract a path parameter from the path component of the request URL that
matched the path declared in @Path.

•You can extract the following types of parameters for use in your resource class:
◦ Query
◦ URI path
◦ Form
◦ Cookie
◦ Header
◦ Matrix

LECTURE 6 22

Configuring Jakarta REST Applications
•A Jakarta REST application consists of at least one resource class packaged within a WAR file. The
base URI from which an application’s resources respond to requests can be set one of two ways:

◦ Using the @ApplicationPath annotation in a subclass of jakarta.ws.rs.core.Application packaged within
the WAR

◦ Using the servlet-mapping tag within the WAR’s web.xml deployment descriptor

LECTURE 6 23

Questions?

LECTURE 6 24

	Web Applications Developments� �ITWT413
	Course Structure
	Course References
	key course objectives
	Lecture Agenda
	Required Software
	Slide Number 7
	What Are RESTful Web Services?
	Principles for to be simple, lightweight, and fast RESTful applications (1)
	Principles for to be simple, lightweight, and fast RESTful applications (2)
	Creating a RESTful Root Resource Class
	Slide Number 12
	Developing RESTful Web Services with Jakarta REST
	Summary of Jakarta REST Annotations lists (1)
	Summary of Jakarta REST Annotations lists (2)
	Summary of Jakarta REST Annotations lists (3)
	Slide Number 17
	Jakarta REST Application Explanation
	The @Path Annotation and URI Path Templates
	Responding to HTTP Methods and Requests
	Using @Consumes and @Produces to Customize Requests and Responses
	Extracting Request Parameters
	Configuring Jakarta REST Applications
	Slide Number 24

