
Web Applications Developments

ITWT413
LECTURE 3: PLATFORM BASICS

DR. HALA SHAARI

Course Structure
 Lecture (Sunday& Tuesday)
 Time: 12:30-14:00
Microsoft Teams Code (goi2d67)
(Lectures, labs, announcements, References):
 Grading :
◦ 25% Midterm exam.
◦ 25% Assignments
◦ 25% Group Project (Groups of two).
◦ 25% Final Exam.

LECTURE 3 2

Course References
Our Course Main References:

• Jakarta EE Tutorial

• Java EE to Jakarta EE 10 Recipes: A Problem-Solution Approach for Enterprise Java (2022)

LECTURE 3 3

key course objectives
1) Master Core Jakarta EE Concepts: Understand the fundamental architecture and

components of Jakarta EE, including Servlets, JSP, JSF, and Enterprise JavaBeans (EJB).

2) Develop RESTful Web Services: Build and deploy scalable RESTful APIs using Jakarta RESTful
Web Services (JAX-RS), with advanced features like exception handling, filters, and security.

3) Implement Dependency Injection and Persistence: Leverage Contexts and Dependency
Injection (CDI) and Jakarta Persistence (JPA) to manage beans and database interactions in
enterprise applications.

4) Ensure Application Security and Transaction Management: Apply Jakarta EE’s security
framework for authentication, authorization, and manage transactions using declarative and
programmatic approaches.

5) Deploy Cloud-Native Applications: Utilize Jakarta EE to build, containerize, and deploy
microservice-based applications in cloud environments, incorporating tools like Docker and
Kubernetes.

LECTURE 3 4

Lecture Agenda
 Required Software

 Platform Basics
• Resource Creation
• Injection
• Packaging

LECTURE 3 5

Required Software
The following software is required to run the examples

• Java Platform, Standard Edition

• Eclipse Glassfish Server

• Jakarta EE Tutorial Examples

• Apache NetBeans IDE

• Apache Maven

• Instructions from page 11 to page17 from Jakarta EE Tutorial tells you everything you need to
know to install, build, and run the tutorial examples

LECTURE 3 6

Understanding Jakarta EE Services
•Jakarta EE provides a wide range of services that can be combined to meet the specific needs of
different applications.

•These services are grouped into three categories: Core, Web, and Platform.

•The Core profile contains the foundational services for enterprise application development, such
as dependency injection, RESTful web services, and JSON processing.

•The Web profile extends the Core profile with services for building web applications, such as
servlets and Jakarta Faces.

•The Platform profile provides the most comprehensive set of services, including the Core and
Web profiles, as well as additional services for mail, batch processing, and messaging.

LECTURE 3 7

Default Paths and File Names
•Jakarta EE applications use a set of default paths and file names that are commonly used in
various environments.

•Understanding these default locations is crucial for configuring and deploying Jakarta EE
applications.

•The as-install placeholder represents the base installation directory for GlassFish Server, which is
typically located in the user's home directory.

•The as-install-parent placeholder represents the parent of the as-install directory.

•The jakartaee-examples placeholder represents the base installation directory for the Jakarta EE
Tutorial examples.

•The domain-dir placeholder represents the directory where a domain's configuration is stored.

LECTURE 3 8

Resource Creation
•Jakarta EE applications use program objects that provide connections to external systems, such
as databases and messaging systems.

•These program objects are called resources.

•Resources are typically managed by a JNDI naming service.

•Jakarta EE provides mechanisms to create and access these resources programmatically using
annotations or administratively using a deployment descriptor or tools.

•Commonly used resources include data sources, mail sessions, and Jakarta Messaging objects.

LECTURE 3 9

Resource Injection
•Resource injection is a mechanism that enables components to obtain references to resources
without explicitly creating them.

•You can inject resources into any Jakarta EE component using the @Resource annotation.

•The @Resource annotation can be used to inject resources for a specific name or for a default
name.

•Resource injection simplifies application development by reducing the need to create and access
resources manually.

•You can also use deployment descriptors to override the resource mapping specified by
annotations.

LECTURE 3 10

Jakarta Contexts and Dependency
Injection (CDI)

•Jakarta CDI is a powerful framework that allows you to manage and inject components into Jakarta EE
applications in a typesafe and loosely coupled way.

•It provides services for dependency injection, context management, interceptors, and decorators.

•You use @Inject to inject managed beans, which are classes annotated with a scope type and the
@Alternative annotation.

•CDI simplifies application development by reducing the need to explicitly manage the lifecycle of
components and by reducing the complexity of dependency management.

•You can use @Produces to create producer methods or producer fields, which generate beans and
allow you to control the bean implementation at runtime.

•You can use @Disposes to define disposer methods, which release resources when they are no longer
needed.

LECTURE 3 11

Resource Injection Vs Dependency
Injection

LECTURE 3 12

Packaging Applications
•Key Types: Jakarta EE applications are built using components, which can be classified as
Web Components, Business Components, or Application Clients.

•Web Components: Web components, such as servlets and Jakarta Faces components,
handle HTTP requests and provide web content to users.

•Business Components: Business components, such as enterprise beans, encapsulate business logic
for the application.

•Application Clients: Application clients are Java programs that consume the services provided by
Jakarta EE applications.

•Component Life Cycle: Jakarta EE components have lifecycle methods, such as init, service,
and destroy for servlets, and PostConstruct, PreDestroy, PostActivate,
and PrePassivate for
enterprise beans.

LECTURE 3 13

Component Packaging
•Component Packaging: Components are packaged into standard units:

• JAR (Java Archive) files for enterprise beans
• WAR (Web Archive) files for web applications
• EAR (Enterprise Archive) files for a collection of modules.

LECTURE 3 14

EAR File Structure

LECTURE 3 15

Packaging Enterprise Beans
•Enterprise Bean JAR Modules: Enterprise beans are typically packaged into JAR files, with a
beans.xml deployment descriptor.

•The beans.xml Deployment Descriptor: This file defines the configuration for the CDI
container within the JAR file.

•EJB JAR Structure: The structure of an enterprise bean JAR file consists of the META-INF
directory,
ejb-jar.xml deployment descriptor, glassfish-ejb-jar.xml optional deployment
descriptor,
MANIFEST.MF file, and the compiled class files.

•Packaging Enterprise Beans in WAR Files: Enterprise beans can be packaged within a WAR
file for web applications.

•Packaging Enterprise Beans in EAR Files: Enterprise beans can be packaged within an EAR file
along with other modules to create a composite application.

LECTURE 3 16

Structure of an Enterprise Bean JAR

LECTURE 3 17

Packaging Web Archives (WAR Files)
•Web Module Definition: A web module represents a single web application, typically using
servlets and Jakarta Faces components.

•WAR File Structure: WAR files include the following:
• WEB-INF directory: Contains the web.xml deployment descriptor, beans.xml

deployment descriptor, faces-config.xml optional deployment descriptor, compiled class
files, and JAR files.

• Content: The root directory contains the web pages (HTML or XHTML) and any other static
resources.

•WAR Deployment: WAR files are deployed to a servlet container, which provides the runtime
environment for web applications.

•WAR Deployment Example: Consider deploying a WAR file named myapp.war to a GlassFish
Server. The server will typically deploy the application to the glassfish/domains/domain1
/autodeploy folder.

•Jakarta Faces and WAR Files: Jakarta Faces applications are commonly packaged as WAR
files, including the necessary Facelets template and XHTML pages.

LECTURE 3 18

Web Module Structure

LECTURE 3 19

Questions?

LECTURE 3 20

	Web Applications Developments� �ITWT413
	Course Structure
	Course References
	key course objectives
	Lecture Agenda
	Required Software
	Understanding Jakarta EE Services
	Default Paths and File Names
	Resource Creation
	 Resource Injection
	Jakarta Contexts and Dependency Injection (CDI)
	Resource Injection Vs Dependency�Injection
	Packaging Applications
	Component Packaging
	EAR File Structure
	Packaging Enterprise Beans
	Structure of an Enterprise Bean JAR
	Packaging Web Archives (WAR Files)
	Web Module Structure
	Slide Number 20

