
Web Applications Developments

ITWT413
LECTURE 9: JAKARTA EE WEB PROFILE

JAKARTA WEBSOCKET

DR. HALA SHAARI

LECTURE 11 2

Basic Platform

Resource Creation

Injection

Packaging

Jakarta EE Core Profile

Jakarta CDI Lite

Jakarta REST

Jakarta JSON

Jakarta EE Web Profile

Jakarta CDI Full

Jakarta Validation

Jakarta Security

Jakarta Servlets

Jakarta Faces

Jakarta WebSocket

Jakarta Persistence

Jakarta Enterprise Beans Lite

Jakarta EE Platform

Jakarta Mail

Jakarta Messaging

Jakarta Batch

Jakarta EE Tutorial- Structure

Jakarta EE 10

LECTURE 11 3

Lecture Agenda
Jakarta Persistence
oEntities
oRequirements for Entity Classes
oPersistent Fields and Properties in Entity Classes
oPrimary Keys in Entities
oMultiplicity in Entity Relationships
oDirection in Entity Relationships
oEmbeddable Classes in Entities
oEntity Inheritance
oAbstract Entities
oQuerying Entities

LECTURE 11 4

Introduction to Jakarta Persistence
Jakarta Persistence provides Java developers with an object/relational mapping facility for
managing relational data in Java applications. Jakarta Persistence consists of four areas:

◦ Jakarta Persistence

◦ The query language

◦ The Jakarta Persistence Criteria API

◦ Object/relational mapping metadata

LECTURE 11 5

Entities
 An entity is a lightweight persistence domain object. Typically, an entity represents a table in a
relational database, and each entity instance corresponds to a row in that table.

 The primary programming artifact of an entity is the entity class, although entities can use
helper classes.

 The persistent state of an entity is represented through either persistent fields or persistent
properties.

 These fields or properties use object/relational mapping annotations to map the entities and
entity relationships to the relational data in the underlying data store.

LECTURE 11 6

Requirements for Entity Classes
An entity class must follow these requirements.
◦ The class must be annotated with the jakarta.persistence.Entity annotation.
◦ The class must have a public or protected, no-argument constructor. The class may have other

constructors.
◦ The class must not be declared final. No methods or persistent instance variables must be declared

final.
◦ If an entity instance is passed by value as a detached object, such as through a session bean’s remote

business interface, the class must implement the Serializable interface.
◦ Entities may extend both entity and non-entity classes, and non-entity classes may extend entity

classes.
◦ Persistent instance variables must be declared private, protected, or package-private and can be

accessed directly only by the entity class’s methods. Clients must access the entity’s state through
accessor or business methods.

LECTURE 11 7

Persistent Fields and Properties in Entity Classes
The persistent state of an entity can be accessed through either the entity’s instance variables
or properties. The fields or properties must be of the following Java language types:
◦ Java primitive types
◦ java.lang.String
◦ Other serializable types, including: Wrappers of Java primitive types, java.math.BigInteger,

java.math.BigDecimal, java.util.Date, ….
◦ Enumerated types
◦ Other entities and/or collections of entities
◦ Embeddable classes

LECTURE 11 8

Primary Keys in Entities
Each entity has a unique object identifier.

A customer entity, for example, might be identified by a customer number. The unique identifier,
or primary key, enables clients to locate a particular entity instance. Every entity must have a
primary key.

An entity may have either a simple or a composite primary key.
o Simple primary keys use the jakarta.persistence.Id annotation to denote the primary key property or

field.
o Composite primary keys are used when a primary key consists of more than one attribute, which

corresponds to a set of single persistent properties or fields.
o Composite primary keys must be defined in a primary key class.
o Composite primary keys are denoted using the jakarta.persistence.EmbeddedId and

jakarta.persistence.IdClass annotations.

LECTURE 11 9

Primary/ Composite key type
The primary key, or the property or field of a composite primary key, must be one of the
following Java language types:
o Java primitive types
o Java primitive wrapper types
o java.lang.String
o java.util.Date (the temporal type should be DATE)
o java.sql.Date
o java.math.BigDecimal
o java.math.BigInteger

Floating-point types should never be used in primary keys. If you use a generated primary key,
only integral types will be portable.

LECTURE 11 10

primary key requirements
A primary key class must meet these requirements.
o The access control modifier of the class must be public.
o The properties of the primary key class must be public or protected if property-based access is used.
o The class must have a public default constructor.
o The class must implement the hashCode() and equals(Object other) methods.
o The class must be serializable.
o A composite primary key must be represented and mapped to multiple fields or properties of the entity

class or must be represented and mapped as an embeddable class.
o If the class is mapped to multiple fields or properties of the entity class, the names and types of the

primary key fields or properties in the primary key class must match those of the entity class.

LECTURE 11 11

Multiplicity in Entity Relationships
Multiplicities are of the following types.
o One-to-one: Each entity instance is related to a single instance of another entity.
o One-to-many: An entity instance can be related to multiple instances of the other entities
oMany-to-one: Multiple instances of an entity can be related to a single instance of the other entity.
oMany-to-many: The entity instances can be related to multiple instances of each other.

LECTURE 11 12

Direction in Entity Relationships
 The direction of a relationship can be either bidirectional or unidirectional.

 A bidirectional relationship has both an owning side and an inverse side.

 A unidirectional relationship has only an owning side. The owning side of a relationship
determines how the Persistence runtime makes updates to the relationship in the database.

LECTURE 11 13

Embeddable Classes in Entities

Embeddable classes are used to represent the state of an entity but don’t have a persistent
identity of their own, unlike entity classes.

 Instances of an embeddable class share the identity of the entity that owns it.

 Embeddable classes exist only as the state of another entity. An entity may have single-valued
or collection-valued embeddable class attributes.

Embeddable classes have the same rules as entity classes but are annotated with the
jakarta.persistence.Embeddable annotation instead of @Entity.

LECTURE 11 14

Entity Inheritance
 Entities support class inheritance, polymorphic associations, and polymorphic queries.

 Entity classes can extend non-entity classes, and non-entity classes can extend entity classes.

Entity classes can be both abstract and concrete.

LECTURE 11 15

Managing Entities
 Entities are managed by the entity manager, which is represented by
jakarta.persistence.EntityManager instances.

 Each EntityManager instance is associated with a persistence context: a set of managed entity
instances that exist in a particular data store.

A persistence context defines the scope under which particular entity instances are created,
persisted, and removed.

The EntityManager interface defines the methods that are used to interact with the persistence
context.

LECTURE 11 16

Managing an Entity Instance’s Lifecycle
You manage entity instances by invoking operations on the entity by means of an EntityManager
instance. Entity instances are in one of four states: new, managed, detached, or removed.
◦ New entity instances have no persistent identity and are not yet associated with a persistence context.
◦ Managed entity instances have a persistent identity and are associated with a persistence context.
◦ Detached entity instances have a persistent identity and are not currently associated with a persistence

context.
◦ Removed entity instances have a persistent identity, are associated with a persistent context, and are

scheduled for removal from the data store.

LECTURE 11 17

Querying Entities
Jakarta Persistence provides the following methods for querying entities.
o The Jakarta Persistence query language (JPQL) is a simple, string-based language similar to SQL used to

query entities and their relationships. See The Jakarta Persistence Query Language for more
information.

o The Criteria API is used to create typesafe queries using Java programming language APIs to query for
entities and their relationships. See Using the Criteria API to Create Queries for more information.

Both JPQL and the Criteria API have advantages and disadvantages.

LECTURE 11 18

JPQL and the Criteria API have advantages and disadvantages
Just a few lines long, JPQL queries are typically more concise and more readable than
Criteria queries. Developers familiar with SQL will find it easy to learn the syntax of JPQL.
JPQL named queries can be defined in the entity class using a Java programming
language annotation or in the application’s deployment descriptor. JPQL queries are not
typesafe, however, and require a cast when retrieving the query result from the entity
manager. This means that type-casting errors may not be caught at compile time. JPQL
queries don’t support open-ended parameters.

Criteria queries allow you to define the query in the business tier of the application.
Although this is also possible using JPQL dynamic queries, Criteria queries provide better
performance because JPQL dynamic queries must be parsed each time they are called.
Criteria queries are typesafe and therefore don’t require casting, as JPQL queries do. The
Criteria API is just another Java programming language API and doesn’t require
developers to learn the syntax of another query language. Criteria queries are typically
more verbose than JPQL queries and require the developer to create several objects and
perform operations on those objects before submitting the query to the entity manager.

LECTURE 11 19

Questions?

LECTURE 11 20

	Web Applications Developments� �ITWT413
	Slide Number 2
	 Jakarta EE 10
	Lecture Agenda
	Introduction to Jakarta Persistence
	Entities
	Requirements for Entity Classes
	Persistent Fields and Properties in Entity Classes
	Primary Keys in Entities
	Primary/ Composite key type
	primary key requirements
	Multiplicity in Entity Relationships
	Direction in Entity Relationships
	Embeddable Classes in Entities
	Entity Inheritance
	Managing Entities
	Managing an Entity Instance’s Lifecycle
	Querying Entities
	JPQL and the Criteria API have advantages and disadvantages
	Slide Number 20

