
Web Applications Developments

ITWT413
LECTURE 9: JAKARTA EE WEB PROFILE

JAKARTA WEBSOCKET

DR. HALA SHAARI

LECTURE 10 2

Basic Platform

Resource Creation

Injection

Packaging

Jakarta EE Core Profile

Jakarta CDI Lite

Jakarta REST

Jakarta JSON

Jakarta EE Web Profile

Jakarta CDI Full

Jakarta Validation

Jakarta Security

Jakarta Servlets

Jakarta Faces

Jakarta WebSocket

Jakarta Persistence

Jakarta Enterprise Beans Lite

Jakarta EE Platform

Jakarta Mail

Jakarta Messaging

Jakarta Batch

Jakarta EE Tutorial- Structure

Jakarta EE 10

LECTURE 10 3

Lecture Agenda
Introduction to WebSocket

o Creating WebSocket Applications in the Jakarta EE Platform

Creating and Deploying a WebSocket Endpoint

Programmatic Endpoints

Annotated Endpoints

Sending and Receiving Messages
o Sending Messages
o Receiving Messages

Maintaining Client State

Using Encoders and Decoders
o Implementing Encoders to Convert Java Objects into WebSocket Messages
o Implementing Decoders to Convert WebSocket Messages into Java Objects

Path Parameters

Handling Errors

Specifying an Endpoint Configurator Class

LECTURE 10 4

Introduction to WebSocket
In the traditional request-response model used in HTTP, the client requests resources, and the
server provides responses.

The exchange is always initiated by the client; the server cannot send any data without the
client requesting it first.

This model worked well for the World Wide Web when clients made occasional requests for
documents that changed infrequently, but the limitations of this approach are increasingly
relevant as content changes quickly and users expect a more interactive experience on the Web.

 The WebSocket protocol addresses these limitations by providing a full-duplex communication
channel between the client and the server. Combined with other client technologies, such as
JavaScript and HTML5, WebSocket enables web applications to deliver a richer user experience.

LECTURE 10 5

Introduction to WebSocket
In a WebSocket application, the server publishes a WebSocket endpoint, and the client uses the
endpoint’s URI to connect to the server.

 The WebSocket protocol is symmetrical after the connection has been established; the client
and the server can send messages to each other at any time while the connection is open, and
they can close the connection at any time.

 Clients usually connect only to one server, and servers accept connections from multiple clients.

The WebSocket protocol has two parts: handshake and data transfer.

The client initiates the handshake by sending a request to a WebSocket endpoint using its URI.

 The handshake is compatible with existing HTTP-based infrastructure: web servers interpret it
as an HTTP connection upgrade request.

LECTURE 10 6

WebSocket Connection
An example handshake from a client looks like this:

An example handshake from the server in response to the client looks like this

LECTURE 10 7

How WebSocket Connection is Working?
 The server applies a known operation to the value of the Sec-WebSocket-Key header to
generate the value of the Sec-WebSocket-Accept header.

The client applies the same operation to the value of the Sec-WebSocket-Key header, and the
connection is established successfully if the result matches the value received from the server.

The client and the server can send messages to each other after a successful handshake.

WebSocket supports text messages (encoded as UTF-8) and binary messages.

 The control frames in WebSocket are close, ping, and pong (a response to a ping frame). Ping
and pong frames may also contain application data.

LECTURE 10 8

WebSocket endpoints
WebSocket endpoints are represented by URIs that have the following form:

The ws scheme represents an unencrypted WebSocket connection, and the wss scheme represents
an encrypted connection.

The port component is optional; the default port number is 80 for unencrypted connections and 443
for encrypted connections.

The path component indicates the location of an endpoint within a server. The query component is
optional.

Modern web browsers implement the WebSocket protocol and provide a JavaScript API to connect to
endpoints, send messages, and assign callback methods for WebSocket events (such as opened
connections, received messages, and closed connections).

LECTURE 10 9

Creating WebSocket Applications in the Jakarta EE Platform
The Jakarta EE platform includes Jakarta WebSocket, which enables you to create, configure,
and deploy WebSocket endpoints in web applications.

The WebSocket client API specified in Jakarta WebSocket also enables you to access remote
WebSocket endpoints from any Java application.

Jakarta WebSocket consists of the following packages.
o The jakarta.websocket.server package contains annotations, classes, and interfaces to create and

configure server endpoints.
o The jakarta.websocket package contains annotations, classes, interfaces, and exceptions that are

common to client and server endpoints.

LECTURE 10 10

Creating and Deploying a WebSocket Endpoint
The process for creating and deploying a WebSocket endpoint:
o Create an endpoint class.
o Implement the lifecycle methods of the endpoint.
o Add your business logic to the endpoint.
o Deploy the endpoint inside a web application.

As opposed to servlets, WebSocket endpoints are instantiated multiple times.

The process is slightly different for programmatic endpoints and annotated endpoints.

LECTURE 10 11

Programmatic endpoints Vs Annotated endpoints.

LECTURE 10 12

WebSocket Endpoint Lifecycle Annotations

LECTURE 10 13

Sending Messages
WebSocket endpoints can send and receive text and binary messages.

 In addition, they can also send ping frames and receive pong frames.

 This slide describes how to use the Session and RemoteEndpoint interfaces to send messages to
the connected peer and how to use the OnMessage annotation to receive messages from it.

Follow these steps to send messages in an endpoint.

1. Obtain the Session object from the connection.

2. Use the Session object to obtain a RemoteEndpoint object.

3. Use the RemoteEndpoint object to send messages to the peer.

LECTURE 10 14

Receiving Messages
The OnMessage annotation designates methods that handle incoming messages.

You can have at most three methods annotated with @OnMessage in an endpoint, one for each
message type: text, binary, and pong.

The following example demonstrates how to designate methods to receive all three types of
messages:

LECTURE 10 15

Maintaining Client State
Because the container creates an instance of the endpoint class for every connection, you can
define and use instance variables to store client state information

LECTURE 10 16

Using Encoders and Decoders
Jakarta WebSocket provides support for converting between WebSocket messages and custom
Java types using encoders and decoders.

 An encoder takes a Java object and produces a representation that can be transmitted as a
WebSocket message; for example, encoders typically produce JSON, XML, or binary
representations.

A decoder performs the reverse function; it reads a WebSocket message and creates a Java
object.

LECTURE 10 17

Path Parameters
The ServerEndpoint annotation enables you to use URI templates to specify parts of an
endpoint deployment URI as application parameters.

 For example, consider this endpoint:

If the endpoint is deployed inside a web application called chatapp at a local Jakarta EE server in
port 8080, clients can connect to the endpoint using any of the following URIs:

LECTURE 10 18

Handling Errors
To designate a method that handles errors in an annotated WebSocket endpoint, decorate it
with @OnError.

This method is invoked when there are connection problems, runtime errors from message
handlers, or conversion errors when decoding messages.

LECTURE 10 19

Specifying an Endpoint Configurator Class
Jakarta WebSocket enables you to configure how the container creates server endpoint
instances.

You can provide custom endpoint configuration logic to:
◦ Access the details of the initial HTTP request for a WebSocket connection
◦ Perform custom checks on the Origin HTTP header
◦ Modify the WebSocket handshake response
◦ Choose a WebSocket subprotocol from those requested by the client
◦ Control the instantiation and initialization of endpoint instances

To provide custom endpoint configuration logic, you extend the
ServerEndpointConfig.Configurator class and override some of its methods.

 In the endpoint class, you specify the configurator class using the configurator parameter of the
ServerEndpoint annotation.

LECTURE 10 20

Questions?

LECTURE 10 21

	Web Applications Developments� �ITWT413
	Slide Number 2
	 Jakarta EE 10
	Lecture Agenda
	Introduction to WebSocket
	Introduction to WebSocket
	WebSocket Connection
	How WebSocket Connection is Working?
	WebSocket endpoints
	Creating WebSocket Applications in the Jakarta EE Platform
	Creating and Deploying a WebSocket Endpoint
	Programmatic endpoints Vs Annotated endpoints.
	WebSocket Endpoint Lifecycle Annotations
	Sending Messages
	Receiving Messages
	Maintaining Client State
	Using Encoders and Decoders
	Path Parameters
	Handling Errors
	Specifying an Endpoint Configurator Class
	Slide Number 21

