
Lecture 71

Software Reuse and

Component-Based SE

ITSE422

Lecture # 7: Reuse and Composition in

Service Computing Part II

Software development with services

 Simplest case:

 a client uses (“consumes”) a service

 Common case:

 several services are composed

Lecture 72

How Clients Use Services

 In order to use a service, a Client

program needs only its WSDL

(contains abstract interface

description and URI of service

endpoint)

Types

Messages

Operations

Port Type

Bindings

Port

Service

WHAT

HOW

WHERE

Lecture 75

Interoperability

Lecture 74

How can a client bind to a service ?

 Static binding

 Service at fixed URL

 Dynamic binding by reference

 Service URL given at runtime

 Dynamic binding by lookup

 Look up service URL in registry (need lookup API)

 Dynamic operation selection

 Service type/operation name given at runtime

 => API’s for Web Services: Java, .NET

Lecture 75

Java APIs for Web Services

 SOAP messages as Java objects
 SAAJ (SOAP with Attachments API for Java)

 Programming Model
 JAX-RPC (Java API for XML-based RPC) => JAX-WS (Java API for XML

Web Services)

 Accessing WSDL descriptions
 JWSDL

 Accessing Web Services Registries
 JAXR (Java API for XML Registries)

Lecture 76

JAX-WS (JAX-RPC)

 WSDL/XML to Java Mapping (wsimport)

 Java to WSDL/XML Mapping (wsgen)

 Client API

 Classes generated from WSDL

 Dynamic Proxy

 DII call Interface

Lecture 77

Web Service Example

<wsdl:message name="addIntResponse">
<wsdl:part name="addIntReturn" type="xsd:int" />

</wsdl:message>
<wsdl:message name="addIntRequest">

<wsdl:part name="a" type="xsd:int" />
<wsdl:part name="b" type="xsd:int" />

</wsdl:message>
<wsdl:portType name="AddFunction">

<wsdl:operation name="addInt" parameterOrder="a b">
<wsdl:input message="impl:addIntRequest" name="addIntRequest" />
<wsdl:output message="impl:addIntResponse" name="addIntResponse" />

</wsdl:operation>
</wsdl:portType>

// possible implementation of WS:
// AddFunction.jws

public class AddFunction {
int addInt(int a, int b){

return(a+b);
}

}

A Web service AddFunction with operation addInt is known through its WSDL:

Lecture 78

Writing the Client Program

 There are many ways to write a Client program that

uses the AddFunction Service (invoking its addInt

operation)
 Using Dynamic Invocation Interface (DII)

 Using generated Stubs from Service WSDL description

 Using Dynamic Proxy

Lecture 79

Client – using DII

 Using Dynamic Invocation Interface (DII):

 Service type (WSDL) can be discovered at runtime (WSDL description is

actually not even needed !)

 Service URL is given at runtime (could be extracted from a WSDL)

 Operation name can also be given at runtime

 Invocation is done by constructing and sending a call message

 Most flexible way; but client code looks “ugly”

Lecture 710

Client - using DII - Example

import javax.xml.rpc.Call;

import javax.xml.rpc.Service;

import javax.xml.namespace.QName;

String endpoint = "http://localhost:8080/axis/AddFunction.jws";

Service service = new Service();

Call call = (Call) service.createCall();

call.setOperationName(new QName(endpoint, "addInt"));

call.setTargetEndpointAddress(new java.net.URL(endpoint));

Integer ret = (Integer)call.invoke(new Object[]{

new Integer(5), new Integer(6)});

System.out.println("addInt(5, 6) = " + ret);

Lecture 711

 Using generated Stubs from Service WSDL description

 Service to be used is known from the beginning and the WSDL is available

at client development time

 Service Endpoint Interface (SEI): the (Java) programming language

representation of a WSDL port type. Can be generated automatically by tools

from a WSDL

 Stubs (proxies) are classes that implement the SEI. They are generated from

the WSDL description (similar with RMI or CORBA middleware for

distributed object computing)

Client – using generated stubs

Lecture 712

Client – using Generated Stubs

import localhost.*;

AddFunctionService afs = new AddFunctionServiceLocator();

AddFunction af = afs.getAddFunction();

System.out.println("addInt(5, 3) = " + af.addInt(5, 3));

Generate the stubs:

java org.apache.axis.wsdl.WSDL2Java \

http://localhost:8080/axis/AddFunction.jws?wsdl

Lecture 713

 Using Dynamic Proxy

 you need to know the abstract WSDL (port type) at development-time

 you need to run your WSDL mapping tool against the WSDL document

before runtime in order to get the Service Endpoint Interface

 The proxy (a class implementing the SEI) is obtained at runtime (here is the

difference with generated stubs: these are obtained at development time)

Client – using Dynamic Proxy

Lecture 714

Client – using Dynamic Proxy

import javax.xml.namespace.QName;

import javax.xml.rpc.*;

String wsdlUrl = "http://localhost:8080/axis/AddFunction.jws?wsdl";

String nameSpaceUri = "http://localhost:8080/axis/AddFunction.jws";

String serviceName = "AddFunctionService";

String portName = "AddFunction";

ServiceFactory serviceFactory = ServiceFactory.newInstance();

Service afs = serviceFactory.createService(new java.net.URL(wsdlUrl),

new QName(nameSpaceUri, serviceName));

AddFunctionServiceIntf afsIntf = (AddFunctionServiceIntf)afs.getPort(

new QName(nameSpaceUri, portName),AddFunctionServiceIntf.class);

System.out.println("addInt(5, 3) = " + afsIntf.addInt(5, 3));

Lecture 715

Where and How to find Services ?
 Service registries:

 UDDI

 Standard for representing and organizing registry information

 Standard API’s for:
 publishing services on UDDI registry

 Lookup services from registry

 Private UDDI registries: inside one enterprise

 Public UDDI registries:
 Existed maintained by major companies

 Not anymore (since 2008)

 Problems of UDDI: (why public UDDI registries died):
 Complex standard and API

 No semantic information

 No certification, no trust

 Info published in UDDI registry accessible only via UDDI lookup API’s, not accessible via usual search
engines

 Using usual search engines

 Using Web service search engines
 http://webservices.seekda.com/

Lecture 716

http://webservices.seekda.com/

17

 Questions?

Lecture 7

