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Software development with services

 Simplest case: 

 a client uses (“consumes”) a service

 Common case: 

 several services are composed
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How Clients Use Services

 In order to use a service, a Client 

program needs only its WSDL

(contains abstract interface 

description and URI of service 

endpoint)
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Interoperability
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How can a client bind to a service ?

 Static binding

 Service at fixed URL

 Dynamic binding by reference

 Service URL given at runtime

 Dynamic binding by lookup

 Look up service URL in registry (need lookup API)

 Dynamic operation selection

 Service type/operation name given at runtime

 => API’s for Web Services: Java, .NET  
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Java APIs for Web Services

 SOAP messages as Java objects
 SAAJ ( SOAP with Attachments API for Java)

 Programming Model
 JAX-RPC (Java API for XML-based RPC) => JAX-WS (Java API for XML 

Web Services)

 Accessing WSDL descriptions
 JWSDL

 Accessing Web Services Registries
 JAXR (Java API for XML Registries)
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JAX-WS (JAX-RPC)

 WSDL/XML to Java Mapping (wsimport)

 Java to WSDL/XML Mapping (wsgen)

 Client API

 Classes generated from WSDL

 Dynamic Proxy

 DII call Interface
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Web Service Example

<wsdl:message name="addIntResponse">
<wsdl:part name="addIntReturn" type="xsd:int" />

</wsdl:message>
<wsdl:message name="addIntRequest">

<wsdl:part name="a" type="xsd:int" />
<wsdl:part name="b" type="xsd:int" />

</wsdl:message>
<wsdl:portType name="AddFunction">

<wsdl:operation name="addInt" parameterOrder="a b">
<wsdl:input message="impl:addIntRequest" name="addIntRequest" />
<wsdl:output message="impl:addIntResponse" name="addIntResponse" />

</wsdl:operation>
</wsdl:portType>

// possible implementation of WS:
// AddFunction.jws

public class AddFunction {
int addInt(int a, int b){

return(a+b);
}

}

A Web service AddFunction with operation addInt is known through its WSDL:
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Writing the Client Program

 There are many ways to write a Client program that 

uses the AddFunction Service (invoking its addInt

operation)
 Using Dynamic Invocation Interface ( DII)

 Using generated Stubs from Service WSDL description

 Using Dynamic Proxy
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Client – using DII

 Using Dynamic Invocation Interface ( DII):

 Service type (WSDL) can be discovered at runtime (WSDL description is 

actually not even needed !)

 Service URL is given at runtime (could be extracted from a WSDL) 

 Operation name can also be given at runtime

 Invocation is done by constructing and sending a call message

 Most flexible way; but client code looks “ugly”
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Client - using DII - Example

import javax.xml.rpc.Call;

import javax.xml.rpc.Service;

import javax.xml.namespace.QName;

String endpoint = "http://localhost:8080/axis/AddFunction.jws";

Service  service = new Service();

Call   call = (Call) service.createCall();

call.setOperationName(new QName(endpoint, "addInt"));

call.setTargetEndpointAddress( new java.net.URL(endpoint) );

Integer ret = (Integer)call.invoke(new Object[]{

new Integer(5), new Integer(6)});

System.out.println("addInt(5, 6) = " + ret);
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 Using generated Stubs from Service WSDL description

 Service to be used  is known from the beginning and the WSDL is  available  

at client development time

 Service Endpoint Interface (SEI): the (Java) programming language  

representation of a WSDL port type. Can be generated automatically by tools 

from a WSDL

 Stubs (proxies) are classes that implement the SEI. They are generated from 

the WSDL description (similar with RMI or CORBA middleware for 

distributed object computing)

Client – using generated stubs
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Client – using Generated Stubs

import localhost.*;

AddFunctionService afs = new AddFunctionServiceLocator();

AddFunction af = afs.getAddFunction();

System.out.println("addInt(5, 3) = " + af.addInt(5, 3));

Generate the stubs:

java org.apache.axis.wsdl.WSDL2Java \

http://localhost:8080/axis/AddFunction.jws?wsdl
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 Using Dynamic Proxy

 you need to know the abstract WSDL (port type) at development-time 

 you need to run your WSDL  mapping tool against the WSDL document 

before runtime in order to get the Service Endpoint Interface

 The proxy (a class implementing the SEI) is obtained at runtime (here is the 

difference with generated stubs: these are obtained at development time)

Client – using  Dynamic Proxy
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Client – using  Dynamic Proxy

import javax.xml.namespace.QName;

import javax.xml.rpc.*;

String wsdlUrl = "http://localhost:8080/axis/AddFunction.jws?wsdl";

String nameSpaceUri = "http://localhost:8080/axis/AddFunction.jws";

String serviceName = "AddFunctionService";

String portName = "AddFunction";

ServiceFactory serviceFactory = ServiceFactory.newInstance();

Service afs = serviceFactory.createService(new java.net.URL(wsdlUrl),

new QName(nameSpaceUri, serviceName));

AddFunctionServiceIntf afsIntf = (AddFunctionServiceIntf)afs.getPort(

new QName(nameSpaceUri, portName),AddFunctionServiceIntf.class);

System.out.println("addInt(5, 3) = " + afsIntf.addInt(5, 3));
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Where and How to find Services ?
 Service registries:

 UDDI 

 Standard for representing and organizing registry information

 Standard API’s for:
 publishing services on UDDI registry

 Lookup services from registry

 Private UDDI registries: inside one enterprise 

 Public UDDI registries:
 Existed maintained by major companies

 Not anymore (since 2008) 

 Problems of UDDI: (why public UDDI registries died):
 Complex standard and API

 No semantic information

 No certification, no trust

 Info published in UDDI registry accessible only via UDDI lookup API’s, not accessible via usual search 
engines

 Using usual search engines  

 Using Web service search engines
 http://webservices.seekda.com/
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 Questions?
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