
Lecture 61

Software Reuse and

Component-Based SE

ITSE422

Lecture # 6 : Reuse and Composition in

Service Computing

Outline

 Short review

 Concepts: Services, SOA, WebServices

 Services as reusable components

 Service engineering

 Software development with services

Lecture 62

Main References

 Ian Sommerville, Software Engineering, 9th edition, chapter 19
(Service-oriented architecture)

Lecture 63

Development with and without reuse

A funny Review:

 Problem and requirements: hungry person wants pizza.

 Solutions ?

1. No reuse – do yourself everything from scratch

2. Component-based development

3. Service reuse

4. Developing with services

Lecture 64

Funny Review:
Case 1: Develop without reuse

Problem and requirements: hungry person wants pizza

Solution 1:
Prepare dough (mix and knead flour, yeast, salt and water)

Let dough rise
Flatten dough, shape

Make sauce (peel and chop tomatoes, mix with pepper, herbs)
Put sauce on dough

Put topping (ham, cheese)
Bake
Eat

Do everything from scratch:
Advantages: no limitations on design

Disadvantages: need skills, time, resources

Lecture 65

Funny Review:
Case 2: Component-Based Development

Problem and requirements: hungry person wants pizza

Solution 2:
Buy pizza dough

Buy ketchup
Put ketchup on dough

Put topping
Bake
Eat

Build with COTS:
Advantages: need less skills, need less time

Disadvantages: design limited by available components. Possible
incompatibilities. Need resources

Lecture 66

Funny Review:
Case 3: Use Services

Problem and requirements: hungry person wants pizza

Solution 3:
Phone Pizza Shop
Wait for delivery

Eat

(Re)use services:
Advantages: no baking skills and time, no resources needed

Disadvantages: depends on availability of pizza shops; it buys
only a one-time solution

Lecture 67

Funny Review:
Folow-Up: Developing with services

 After successfully using pizza delivery services for its own use, our

guy gets to the idea to start a new business, the Party Organizer

Service:

Follow-up Solution:

Put together a party organizer service, by combining (composing and
coordinating) external services:

•Pizza delivery service

•Taxi service

•Cleaning service

Developing with services: The Party Service Company
has only a phone and an agenda, it does not do

anything itself: it just coordinates the use of external
services

Lecture 68

Review: What are the “Software Entities”

to compose and reuse?

• Functions

• Modules

• Objects

• Components

• Services

• … 2010

2000

1990

1980

1970

1960

1968: Douglas McIlroy: “Mass Produced

Software Components”

1998: Clemens Szyperski: “Component

Software – Beyond Object Oriented

Programming”

Lecture 69

Review: Objects-Components-Services

Entities for Reuse and Composition

•Abstraction

•Encapsulation

Objects Components Services
•Location: same process

•Inheritance

•Polymorphism

•Location: different

processes, same

environment

•Usually some runtime

infrastructure needed

•Provided and required

interfaces

•Are deployed at the

consumer premises

•Location: different

environments

•More emphasis on

interface/contract/service

agreement

•Mechanisms for dynamic

discovery

•Dynamically composable

•Are deployed at the

producer premises

10

Outline

 Short review

 Concepts: Services, SOA, WebServices

 Services as reusable components

 Service engineering

 Software development with services

Lecture 611

What is a service ?

 An act or performance offered by one party to another. Although the

process may be tied to a physical product, the performance is essentially

intangible and does not normally result in ownership of any of the factors

of production.

 Service provision is therefore independent of the application using

the service.

Lecture 612

Service-oriented architectures

 A means of developing distributed systems where the components

are stand-alone services

 Services may execute on different computers from different service

providers

 Standard protocols have been developed to support service

communication and information exchange

 Services are platform and implementation-language independent

 Registries enable the discovery of services

Lecture 613

Characteristics of Primitive SOA

Lecture 614

Benefits of services

 Provider independence.

 Public advertising of service availability.

 Potentially, run-time service binding.

 Opportunistic construction of new services through composition.

 Pay for use of services.

 Smaller, more compact applications.

 Reactive and adaptive applications.

Lecture 615

Benefits of SOA

 Services can be provided locally or outsourced to external

providers

 Services are language-independent

 Investment in legacy systems can be preserved

 Inter-organizational computing is facilitated through simplified

information exchange

Lecture 616

Services standards

 Services are based on agreed standards so can be provided on any

platform and written in any programming language.

 Web services: one kind of services

 Thomas Erl: common misperceptions about SOA:

 “An application that uses web services is service-oriented”

 “SOA is just a marketing term used to re-brand web services”

Lecture 617

Web Services Definition by W3C
 A Web service is a software application

 identified by an URI,

 whose interfaces and bindings are capable of being defined, described

and discovered by XML artifacts and

 supports direct interactions with other software applications

 using XML based messages

 via internet-based protocols

Lecture 618

Web Services

 The Web Services initiative has been driven by standards from its

beginning (vs Components where standardisation has been tried

later and several different standards=component models are in use)

 Key standards

 XML – Extensible Markup Language

 SOAP - Simple Object Access Protocol;

 WSDL - Web Services Description Language;

 UDDI - Universal Description, Discovery and Integration.

Lecture 619

SOA based on Web Services

Lecture 620

Key standards

 SOAP
 A message layout standard that supports service communication

 Defines a uniform way of passing XML-encoded data

 Defines a way to bind HTTP as the underlying communication protocol

 WSDL (Web Service Definition Language)
 This standard allows a service interface and its bindings to be defined

 UDDI
 Defines the components of a service specification that may be used to discover

the existence of a service

 WS-BPEL(Business Process Execution Language)
 A standard for workflow languages used to define service composition

Lecture 621

More Web Services Standards

Transport (H TTP, HT TPS, SMTP, ...)

Messaging (SOAP)

Service definit ion (UDDI, WSDL)

Process (WS-BPEL)

Sup p ort (WS-Security , WS-Addressing, ...)

XML tech nologies (XML, XSD, XSL T,)

Lecture 622

Standards organizations that

contribute to SOA / WS

 The World Wide Web Consortium W3C:

 Goal: to further the evolution of the web, by providing fundamental standards

that improve online business and information sharing

 XML, XMLSchema, WSDL, SOAP

 Organisation for the Advancement of Structured Information

Standards OASIS

 Goal: to promote online trade and commerce via specialized Web services

standards

 UDDI, WS-BPEL, WS-Security

 Major vendors that contribute to SOA

 Microsoft, IBM, BEA Systems, Sun, Oracle, Tibco, Hewlett-Packard, Canon

Lecture 623

Outline

 Short review

 Concepts: Services, SOA, WebServices

 Services as reusable components

 Service engineering

 Software development with services

Lecture 624

Services as reusable components

 A service can be defined as:

 A loosely-coupled, reusable software component that encapsulates discrete

functionality which may be distributed and programmatically accessed. A web service

is a service that is accessed using standard Internet and XML-based protocols

Lecture 625

Services as reusable components

 Abstraction and encapsulation: WSDL service description (‘provides’

interface) and service implementation

 In order to use a service, a client needs only the WSDL

 A critical distinction between a service and a component as defined

in CBSE is that services are independent

 Services do not have a ‘requires’ interface

 Services rely on message-based communication with messages expressed in

XML (not on method calls)

Lecture 626

Message-based communication

Lecture 627

Web service description language (WSDL)

 The service interface is defined in a service description expressed in

WSDL. The WSDL specification defines

 What operations the service supports and the format of the messages that

are sent and received by the service

 How the service is accessed - that is, the binding maps the abstract interface

onto a concrete set of protocols

 Where the service is located. This is usually expressed as a URI (Universal

Resource Identifier)

Lecture 628

Structure of a WSDL specification

Lecture 629

Main elements of a WSDL document

 XML elements in its description:

 Abstract interface:

 <portType> (renamed <interface> in WSDL 2.0)

 <operation>

 <message>

 <types>

 Concrete implementation:

 <binding>

 <port> (renamed <endpoint> in WSDL 2.0)

 <service>

Lecture 630

WSDL document structure
<definitions>

<portType>

</portType>

<message>

</message>

<types>

</types>

<binding>

</binding>

</definitions>

Lecture 631

<portType> Element

 This is probably the most important element

 Describes the web service

 Operations that can be performed

 Messages that are involved

 Comparable to a function/method library in a programming language

 A port is defined by associating a network address with a reusable binding

Lecture 632

<message> Element

 Defines the data elements of an operation

 Each message can have one or more parts

 Each part is comparable to a function/method call in a programming

language

Lecture 633

Simplified Example

<message name="getTermRequest">

<part name="term" type="xs:string"/>

</message>

<message name="getTermResponse">

<part name="value" type="xs:string"/>

</message>

<portType name="glossaryTerms">

<operation name="getTerm">

<input message="getTermRequest"/>

<output message="getTermResponse"/>

</operation>

</portType>

Lecture 634

Types of operations
 One-way

 Can receive a message, but will not return a message

 Example use: receiving request to insert a new value in a database

 Request-response

 Can receive a request and will return a response

 Example use: receiving a request for a value from a database and sending it back in a response

 Solicit-response

 Can send a request and will wait for a response

 Example use: requesting a value from a database and having it sent back in the response

 Notification

 Can send a message, but will not wait for a response

 Example use: inserting a new value in a database

Lecture 635

Example of one-way operation

<message name="newTermValues">

<part name="term" type="xs:string"/>

<part name="value" type="xs:string"/>

</message>

<portType name="glossaryTerms">

<operation name="setTerm">

<input name="newTerm" message="newTermValues"/>

</operation>

</portType >

Lecture 636

<binding> Element

 One binding represents one possible transport technology the

service can use to communicate

 A binding can apply to an entire interface or just a specific operation

 Has two attributes:

 Name – Can be set to any value, which represents the name of the binding

 Type – Points to the port (interface) for the binding

 When using SOAP, a <soap:binding> sub-element is used to set the

style and transport values with elements:

 Style – with value of either “rpc” or “document”

 Transport – defines the SOAP protocol to use

(like HTTP)

Lecture 637

SOAP binding example

<portType name="glossaryTerms">
<operation name="getTerm">
<input message="getTermRequest"/>
<output message="getTermResponse"/>

</operation>
</portType>

<binding type="glossaryTerms" name="b1">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
</operation>

</binding>

Lecture 638

<port> (<endpoint>) Element

 A <port> or <endpoint> represents the physical address at which a service

(interface) can be accessed with a specific protocol

 A <service> groups a set of related endpoints

Lecture 639

Endpoint example

<service name=“GlossaryTermsService”>
<port name=“GlossaryTermsSoap1” binding=“b1”>

<soap:address location=“http://myserver.com/WebServices/GlossaryTerms1.asmx ” />
</port>

</service>

Lecture 640

IDL model for Web Services

 WSDL acts as an IDL for Web Services distributed programming model

 Definitions are processed by an IDL compiler to generate:

 stubs for clients which look like local function calls

 Dispatch routines for the server that invoke the developer’s code

 Tools can generate WSDL descriptions from implementations (Bottom-

up approach)

 Tools can generate implementation stubs from WSDL (Top-down

approach)

 Technology examples:

 Java: Axis: wsdl2java, java2wsdl

 .NET: wsdl.exe

Lecture 641

Outline

 Short review

 Concepts: Services, SOA, WebServices

 Services as reusable components

 Service engineering

 Software development with services

Lecture 642

Service-oriented software engineering

 Existing approaches to software engineering have to evolve to

reflect the service-oriented approach to software development

 Service engineering. The development of dependable, reusable services

 Software development for reuse

 Software development with services. The development of dependable software

where services are the fundamental components

 Software development with reuse

Lecture 643

Service engineering

 The process of developing services for reuse in service-oriented

applications

 The service has to be designed as a reusable abstraction that can be

used in different systems

 Involves

 Service candidate identification

 Service design

 Service implementation

Lecture 644

Service implementation and

deployment

 Programming services using a standard programming language

 Bottom-up approach: write class, generate WSDL

 Top-down approach: have WSDL, generate class stub

 Services then have to be tested by creating input messages and

checking that the output messages produced are as expected

 Deployment involves:

 installing it on an application server

 Optionally, publicising the service (using UDDI)

Lecture 645

Outline

 Short review

 Concepts: Services, SOA, WebServices

 Services as reusable components

 Service engineering

 Software development with services
Next lecture!

Lecture 646

47

 Questions?

Lecture 6

Contemporary SOA

 Complex applications require more than the provider-requester-
registry triangle

 Activities: a task performed by a set of interacting services

 Coordination: complex activities need context data and the
subsequent need for this data to be managed at runtime

 Atomic transactions: being able to guarantee an outcome of an
activity

 Business activities: manage complex long-running activities that can
vary in scope and the participating services

 Orchestration: an organization- speciffic business workflow; an
organization owns and controls logic behind composition

 Choreography: there is no single owner of the collaboration logic

Lecture 648

Web Service Description Language

(WSDL)

 An Interface Definition Language (IDL)

 An IDL is needed when languages differ

 Other example IDL’s:

 Corba IDL (Object-oriented syntax)

 OSF’s DCE (C like syntax)

 DCOM IDL based on OSF’s DCE and used by Microsoft’s DCOM

 Sun XDR (An IDL for RPC)

Lecture 649

