
Lecture 61

Software Reuse and

Component-Based SE

ITSE422

Lecture #4: CBSE Processes &

Component Composition &

Component Specification I

Main References

 Ian Sommerville, Software Engineering, 8th edition, chapter 19.1
(Components and component models)

 Ivica Crnkovic, Magnus Larsson. Building reliable component based
software systems, Artech House, 2002.

 Roger S. Pressman, Software Engineering: A Practitioner’s Approach,
Eighth Edition, McGraw-Hill Higher Education, 2015

Lecture 62

CBSE processes

Lecture 63

CBSE processes

 CBSE processes are software processes that support

component-based software engineering.

 They take into account the possibilities of reuse and the different

process activities involved in developing and using reusable

components.

 Development for reuse

 This process is concerned with developing components or services

that will be reused in other applications. It usually involves

generalizing existing components.

 Development with reuse

 This process is the process of developing new applications using

existing components and services.

Lecture 64

CBSE processes

Lecture 65

Supporting processes

 Component acquisition is the process of acquiring

components for reuse or development into a reusable

component.

 It may involve accessing locally- developed components or services

or finding these components from an external source.

 Component management is concerned with managing a

company’s reusable components, ensuring that they are

properly catalogued, stored and made available for reuse.

 Component certification is the process of checking a

component and certifying that it meets its specification.

Lecture 66

CBSE for reuse

 CBSE for reuse focuses on component development.

 Components developed for a specific application usually have

to be generalized to make them reusable.

 A component is most likely to be reusable if it associated with

a stable domain abstraction (business object).

 For example, in a hospital stable domain abstractions are

associated with the fundamental purpose - nurses, patients,

treatments, etc.

Lecture 67

Component development for reuse

 Components for reuse may be specially constructed by
generalising existing components.

 Component reusability

 Should reflect stable domain abstractions;

 Should hide state representation;

 Should be as independent as possible;

 Should publish exceptions through the component interface.

 There is a trade-off between reusability and usability

 The more general the interface, the greater the reusability but
it is then more complex and hence less usable.

Lecture 68

Changes for reusability

 Remove application-specific methods.

 Change names to make them general.

 Add methods to broaden coverage.

 Make exception handling consistent.

 Add a configuration interface for component adaptation.

 Integrate required components to reduce dependencies.

Lecture 69

Exception handling

 Components should not handle exceptions themselves,

because each application will have its own requirements for

exception handling.

 Rather, the component should define what exceptions can arise and

should publish these as part of the interface.

 In practice, however, there are two problems with this:

 Publishing all exceptions leads to bloated interfaces that are harder

to understand. This may put off potential users of the component.

 The operation of the component may depend on local exception

handling, and changing this may have serious implications for the

functionality of the component.

Lecture 610

Legacy system components

 Existing legacy systems that fulfil a useful business function can

be re-packaged as components for reuse.

 This involves writing a wrapper component that implements

provides and requires interfaces then accesses the legacy

system.

 Although costly, this can be much less expensive than rewriting

the legacy system.

Lecture 611

Reusable components

 The development cost of reusable components may be higher

than the cost of specific equivalents. This extra reusability

enhancement cost should be an organization rather than a

project cost.

 Generic components may be less space-efficient and may have

longer execution times than their specific equivalents.

Lecture 612

Component management

 Component management involves deciding how to classify the

component so that it can be discovered, making the

component available either in a repository or as a service,

maintaining information about the use of the component and

keeping track of different component versions.

 A company with a reuse program may carry out some form of

component certification before the component is made

available for reuse.

 Certification means that someone apart from the developer checks

the quality of the component.

Lecture 613

CBSE with reuse

 CBSE with reuse process has to find and integrate reusable
components.

 When reusing components, it is essential to make trade-offs
between ideal requirements and the services actually provided
by available components.

 This involves:

 Developing outline requirements;

 Searching for components then modifying requirements according to
available functionality.

 Searching again to find if there are better components that meet the
revised requirements.

 Composing components to create the system.

Lecture 614

CBSE with reuse

Lecture 615

The component identification process

Lecture 616

Component identification issues

 Trust. You need to be able to trust the supplier of a component. At
best, an untrusted component may not operate as advertised; at
worst, it can breach your security.

 Requirements. Different groups of components will satisfy different
requirements.

 Validation.
 The component specification may not be detailed enough to allow

comprehensive tests to be developed.

 Components may have unwanted functionality. How can you test this will not
interfere with your application?

Lecture 617

Component validation

 Component validation involves developing a set of test cases

for a component (or, possibly, extending test cases supplied

with that component) and developing a test harness to run

component tests.

 The major problem with component validation is that the

component specification may not be sufficiently detailed to allow you

to develop a complete set of component tests.

 As well as testing that a component for reuse does what you

require, you may also have to check that the component does

not include any malicious code or functionality that you don’t

need.

Lecture 618

Ariane launcher failure – validation failure?

 In 1996, the 1st test flight of the Ariane 5 rocket ended in disaster

when the launcher went out of control 37 seconds after take off.

 The problem was due to a reused component from a previous

version of the launcher (the Inertial Navigation System) that failed

because assumptions made when that component was developed

did not hold for Ariane 5.

 The functionality that failed in this component was not required in

Ariane 5.

Lecture 619

Component composition

Lecture 620

Component composition

 The process of assembling components to create a system.

 Composition involves integrating components with each other

and with the component infrastructure.

 Normally you have to write ‘glue code’ to integrate

components.

Lecture 621

Types of composition

 Sequential composition (1) where the composed components are
executed in sequence. This involves composing the provides
interfaces of each component.

 Hierarchical composition (2) where one component calls on the
services of another. The provides interface of one component is
composed with the requires interface of another.

 Additive composition (3) where the interfaces of two components

are put together to create a new component. Provides and
requires interfaces of integrated component is a combination
of interfaces of constituent components.

Lecture 622

Types of component composition

Lecture 623

Glue code

 Code that allows components to work together

 If A and B are composed sequentially, then glue code has to call

A, collect its results then call B using these results,

transforming them into the format required by B.

 Glue code may be used to resolve interface incompatibilities.

Lecture 624

Interface incompatibility

 Parameter incompatibility where operations have the same

name but are of different types.

 Operation incompatibility where the names of operations in

the composed interfaces are different.

 Operation incompleteness where the provides interface of one

component is a subset of the requires interface of another.

Lecture 625

Components with incompatible interfaces

Lecture 626

Adaptor components

 Address the problem of component incompatibility by

reconciling the interfaces of the components that are

composed.

 Different types of adaptor are required depending on the type

of composition.

 An addressFinder and a mapper component may be composed

through an adaptor that strips the postal code from an address

and passes this to the mapper component.

Lecture 627

Composition through an adaptor

 The component postCodeStripper is the adaptor that

facilitates the sequential composition of addressFinder and

mapper components.

Lecture 628

An adaptor linking a data collector and a sensor

Lecture 629

Photo library composition

Lecture 630

Interface semantics

 You have to rely on component documentation to decide if

interfaces that are syntactically compatible are actually

compatible.

 Consider an interface for a PhotoLibrary component:

Lecture 631

Photo Library documentation

Lecture 632

“This method adds a photograph to the library and associates the
photograph identifier and catalogue descriptor with the photograph.”

“what happens if the photograph identifier is already associated with a
photograph in the library?”

“is the photograph descriptor associated with the catalogue entry as
well as the photograph i.e. if I delete the photograph, do I also delete

the catalogue information?”

The Object Constraint Language

 The Object Constraint Language (OCL) has been designed to

define constraints that are associated with UML models.

 It is based around the notion of pre and post condition

specification.

Lecture 633

The OCL description of the Photo Library

interface

Lecture 634

Photo library conditions

 As specified, the OCL associated with the Photo Library component

states that:

 There must not be a photograph in the library with the same identifier as the

photograph to be entered;

 The library must exist - assume that creating a library adds a single item to it;

 Each new entry increases the size of the library by 1;

 If you retrieve using the same identifier then you get back the photo that you

added;

 If you look up the catalogue using that identifier, then you get back the

catalogue entry that you made.

Lecture 635

Composition trade-offs

 When composing components, you may find conflicts between

functional and non-functional requirements, and conflicts between

the need for rapid delivery and system evolution.

 You need to make decisions such as:

 What composition of components is effective for delivering the functional

requirements?

 What composition of components allows for future change?

 What will be the emergent properties of the composed system?

Lecture 636

Data collection and report generation

components

Lecture 637

Lecture 638

 Here, there is a potential conflict between adaptability and
performance.

 Composition (a) is more adaptable but composition (b) is perhaps
faster and more reliable.

 The advantages of composition (a) are that reporting and data
management are separate, so there is more flexibility for future
change.

 In composition (b), a database component with built-in reporting
facilities (e.g., Microsoft Access) is used. The key advantage of
composition (b) is that there are fewer components.

 Furthermore, data integrity rules that apply to the database will also
apply to reports

 In general, a good composition principle to follow is the principle of
separation of concerns

Lecture 639

Component Specification I

Component specification

 There should be no difference between:

 What a component does

 What we know it does

 The only way we get to know what a component does is from its

component specification

 Levels of a component specification:

 Syntax: includes specifications on the programming language level.

 Semantic: functional contracts

Lecture 640

syntactic specification

 All component models use syntactic specification of interfaces:

 Programming language

 IDL

 Examples

 Microsoft’s Component Object Model (COM)

 Common Object Request Broker Architecture (CORBA)

 JavaBeans

Lecture 641

Example: component SpellChecker

«comp spec»

SpellChecker

ISpellCheck

ICustomSpellCheck

Implementation as a COM (Component Object Model) component:

• Uses an IDL (Interface Description Language)

Lecture 642

IDL (Interface Description Language)

Example

interface ISpellCheck : IUnknown

{

HRESULT check([in] BSTR *word, [out] bool *correct);

};

interface ICustomSpellCheck : IUnknown

{

HRESULT add([in] BSTR *word);

HRESULT remove([in] BSTR *word);

};

library SpellCheckerLib

{

coclass SpellChecker

{

[default] interface ISpellCheck;

interface ICustomSpellCheck;

};

};

Lecture 643

Semantic Specification

 Tool support for component developers

 Tool support for developers of component-based applications

Lecture 544

Example: SpellChecker component

«comp spec»

SpellChecker

ISpellCheck

ICustomSpellCheck

Lecture 545

Example: OCL Interface Specification

context ISpellCheck::check(in word : String, out correct : Boolean):

HRESULT

pre:

word <> “”

post:

SUCCEEDED(result) implies correct = words->includes(word)

context ICustomSpellCheck::add(in word : String) : HRESULT

pre:

word <> “”

post:

SUCCEEDED(result) implies words = words@pre->including (word)

context ICustomSpellCheck::remove(in word : String) : HRESULT

pre:

word <> “”

post:

SUCCEEDED(result) implies words = words@pre->exluding(word)

Lecture 546

47

 Questions?

Lecture 6

