
Lecture 31

Software Reuse and

Component-Based SE

ITSE422

Lecture #3: CBSE

Introduction and Basic Concepts &

Modeling Components with UML

Main References

 Ian Sommerville, Software Engineering, 8th edition, chapter 19.1
(Components and component models)

 Ivica Crnkovic, Magnus Larsson. Building reliable component based
software systems, Artech House, 2002.

 Roger S. Pressman, Software Engineering: A Practitioner’s Approach,
Eighth Edition, McGraw-Hill Higher Education, 2015

Lecture 32

Component based development

• “Systems should be assembled from existing components”
– Idea dates since 1968: Douglas McIllroy: “Mass produced software components”

• Component-based software engineering (CBSE) is an approach to
software development that relies on software reuse – reusing
artifacts (software parts)

• Advantages of CBSE:
– Reuse: Development of system = assembly of component

– Flexibility: Maintenance,upgrading=customization, replacement of
components, extensibility by adding components. His may even happen at
run-time with proper infrastructure support !

Lecture 33

Advantage 1: Software construction

Application

Software construction vs. creation: application is
developed as an assembly of “integrated circuits”

Lecture 34

Advantage 2: Reuse

C1

C1

C1

Application 1

Application 2

Software “integrated circuits”
are reusable entities

It pays off to have as many applications
that reuse an entity

Lecture 35

Advantage 3: Maintenance & Evolution

C1
Application

C1new

update

Maintenance and upgrading can
be done by replacing parts, maybe

even at runtime

Lecture 36

What are the “Entities” to compose ?

• Functions

• Modules

• Objects

• Components

• Services

• … 2010

2000

1990

1980

1970

1960 1968: Douglas McIlroy: “Mass Produced

Software Components”

1998: Clemens Szyperski: “Component

Software – Beyond Object Oriented

Programming”

Lecture 37

Principles for reuse by composition

• Key requirements for Black-Box reuse:

– Abstraction: an “Entity” is known by its “interface”

– Encapsulation: the “insides” of an “Entity” are not

exposed to the outside

Lecture 38

Commonalities

of Reusable Entities

• All are blobs of code that can
do something

• All have interfaces that
describe what they can
do.

• All live in a process
somewhere.

• All live to do the bidding of a
client.

• All support the concept of a
client making requests
by “invoking a method.”

Lecture 310

Reusable Entities

by Location and Environment

Environment: the hosting runtime environment for the
Entity and the Client (Examples: Microsoft .NET, WebSphere EJB)

Lecture 3
10

Objects-Components-Services

Entities for Reuse and Composition

•Abstraction

•Encapsulation

Objects Components Services
•Location: same process

•Inheritance

•Polymorphism

•Location: different

processes, same

environment

•Usually some runtime

infrastructure needed

•No state

•No shared variables

•Location: different

environments

•More emphasis on

interface/contract/service

agreement

•Mechanisms for dynamic

discovery

•Dynamically composable

Lecture 311

Reusable Entities

made more usable and more composable

• Issues:

• Interface description – what should contain a complete description ?

• Composition – how are components glued together ? (do I have to write much

glue code ?)

• Discovery – where and how to find the component/service you need ?

• Dynamic aspects – when to do discovery/selection/composition

• Less stress on binary implementation – crossing platform/model boundaries

Lecture 312

CBSE reuse

• Component Based Software Engineering (CBSE) =

reuse of:

– Parts (components)

– Infrastructure

Lecture 313

Component based software construction –

the ideal case

Application

Software construction vs. creation: application is

developed as an assembly of “integrated circuits”

Lecture 314

Component based software construction

– in practice

Lecture 315

Component interactions

Components must obey to common conventions or standards !

Only in this way they will be able to recognise each others interfaces and

connect and communicate to each other

Lecture 316

CBSE essentials

• Independent components specified by their interfaces.
– Separation between interface and implementation

– Implementation of a component can be changed without changing the system

• Component standards to facilitate component integration.
– Component models embody these standards

– Minimum standard operations: how are interfaces specified, how communicate
components

– If components comply to standards, then their operation may be independent of their
programming language

• Middleware that provides support for component inter-operability.
– Provides support for component integration

– Handles component communication, may provide support for resource allocation,
transaction management, security, concurrency

• A development process that is geared to reuse.

Lecture 317

CBSE and design principles

• Apart from the benefits of reuse, CBSE is based on sound software
engineering design principles that support the construction of
understandable and maintainable software:

– Components are independent so they do not interfere with each other;

– Component implementations are hidden so they can be changed without
affecting others;

– Communication is through well-defined interfaces so if these are maintained
one component can be replaced by another that provides enhanced
functionality;

– Component platforms (infrastructures) are shared and reduce development
costs.

Lecture 318

Component definitions - Szyperski

 Szyperski:

“A software component is a unit of composition with contractually specified

interfaces and explicit context dependencies only. A software component can

be deployed independently and is subject to composition by third-parties.”

Lecture 319

Component definitions

– Councill and Heinemann

 Councill and Heinmann:

“A software component is a software element that conforms to a

component model and can be independently deployed and composed

without modification according to a composition standard.”

Lecture 320

Component characteristics 1

Standardised Component standardisation means that a component

that is used in a CBSE process has to conform to

some standardised component model. This model

may define component interfaces, component meta-

data, documentation, composition and deployment.

Independent A component should be independent – it should be

possible to compose and deploy it without having to

use other specific components. In situations where

the component needs externally provided services,

these should be explicitly set out in a ‘requires’

interface specification.

Composable For a component to be composable, all external

interactions must take place through publicly defined

interfaces. In addition, it must provide external

access to information about itself such as its methods

and attributes.

Fig. 19.1 from [Sommerville]Lecture 321

Component characteristics (cont)

Deployable To be deployable, a component has to be self-

contained and must be able to operate as a stand-

alone entity on some component platform that

implements the component model. This usually

means that the component is a binary component that

does not have to be compiled before it is deployed.

Documented Components have to be fully documented so that

potential users of the component can decide whether

or not they meet their needs. The syntax and, ideally,

the semantics of all component interfaces have to be

specified.

Fig. 19.1 from [Sommerville]Lecture 322

Component interfaces

• An interface of a component can be defined as a specification of its access point,
offering no implementation for any of its operations.

• This seperation makes it possible to:
– Replace the implementation part without changing the interface;

– Add new interfaces (and implementations) without changing the existing
implementation

• A component has 2 kinds of interfaces:
– Provides interface

• Defines the services that are provided by the component to the environment / to other
components.

• Essentially it is the component API

• Mostly methods that can be called by a client of the component

– Requires interface

• Defines the services that specifies what services must be made available by the environment for
the component to execute as specified.

• If these are not available the component will not work. This does not compromise the
independence or deployability of the component because it is not required that a specific
component should be used to provide these services

Lecture 323

Component interfaces

Fig. 19.2 from [Sommerville]Lecture 324

Example: A data collector component

Fig. 19.3 from [Sommerville]Lecture 325

Describing interfaces

• Interfaces defined in standard component technologies using techniques such as

Interface Definition Language (IDL) are:

– Sufficient in describing functional properties.

– Insuffiecient in describing extra-functional properties such as quality attributes like

accuracy, availability, latency, security, etc.

• A more accurate specification of a component's behavior can be achieved

through contracts.

Lecture 326

Component models

• A component model is a definition of standards for component implementation,

documentation and deployment.

• These standards are for:

– component developers to ensure that components can interoperate

– Providers of component executioninfrastructures who provide middleware to

support component operation

• Examples of component models

– EJB model (Enterprise Java Beans)

– COM+ model (.NET model)

– Corba Component Model

• The component model specifies how interfaces should be defined and the

elements that should be included in an interface definition.

Lecture 327

Elements of a component model

Component model

Interfaces
Usage

information
Dep loy ment

and use

Interface

definit ion

Sp ecific

inter faces

Compos ition

Naming

con vention

Meta-data

access

Cus tomisation

Packag ing

Documentation

Evolut ion

sup p or t

Fig. 19.4 from [Sommerville]Lecture 328

Middleware support

• Component models are the basis for middleware that provides
support for executing components.

• Component model implementations provide shared services for
components:

– Platform services that allow components written according to the model to
communicate;

– Horizontal services that are application-independent services used by
different components.

• To use services provided by a component model infrastructure,
components are deployed in a container. This is a set of interfaces
used to access the service implementations.

Lecture 329

Component model services

Fig. 19.5 from [Sommerville]Lecture 330

Component Based Development – Summary

•CBSE is about:

–Building a system by composing “entities”

–Reusing “entities”

–Maintaining a system by adding/removing/replacing “entities”

•What are the “entities” ?

–Functions, modules, objects, components, services, ..

•Reusable “entities” are encapsulated abstractions : provided/required

interfaces

•Composition of “entities” has to be supported by

–Standards (component models)

–Middleware (component framework)

Lecture 337

Lecture 332

Modelling

components in UML

Main References

 Modelling components in UML

 Main text:

 Kim Hamilton, Russell Miles, Learning UML 2.0, OReilly, 2006 , chapter 12

(Managing and Reusing Your System's Parts: Component Diagrams)

 Additional readings:

 Documenting Component and Connector Views with UML 2.0, Technical Report CMU-

SEI-2004-TR-008, http://www.sei.cmu.edu/library/abstracts/reports/04tr008.cfm

 Kim Hamilton, Russell Miles, Learning UML 2.0, OReilly, 2006 , chapter 11

(Modeling a Class's Internal Structure: Composite Structures)

Lecture 333

http://www.sei.cmu.edu/library/abstracts/reports/04tr008.cfm

UML Components

 Components are used in UML to organize a system into manageable, reusable,
and swappable pieces of software.

 UML component diagrams model the components in your system and as such
form part of the development view

 The development view describes how your system's parts are organized into
modules and components and is great at helping you manage layers within your
system's architecture.

Lecture 334

12-1. The Development View of your model describes how
your system's parts are organized into modules

and components

UML Components

 In UML, a component can do:

 the same things a class can do: generalize and associate with other classes

and components, implement interfaces, have operations, and so on.

 Furthermore, as with composite structures, components can have ports and

show internal structure. It's common for a component to contain and use

other classes or components to do its job.

 To promote loose coupling and encapsulation, components are accessed

through interfaces.

Lecture 335

UML notation for components

• A component is drawn as a rectangle with the
<<component>> stereotype and an optional
tabbed rectangle icon in the upper righthand
corner.

• In earlier versions of UML, the component symbol
was a larger version of the tabbed rectangle icon

• You can show that a component is actually a
subsystem of a very large system by replacing
<<component>> with <<subsystem>>

Fig. 12.2 and 12.3 from [UML2]

Lecture 35

Provided and required interfaces

 Components need to be loosely coupled so that they can be
changed without forcing changes on other parts of the system.

 Components interact with each other through provided and
required interfaces to control dependencies between components
and to make components swappable.

 A provided interface of a component is an interface that the
component realizes. Other components and classes interact with a
component through its provided interfaces . A component's
provided interface describes the services provided by the
component.

 A required interface of a component is an interface that the
component needs to function. More precisely, the component needs
another class or component that realizes that interface to function.
But to stick with the goal of loose coupling, it accesses the class or
component through the required interface. A required interface
declares the services a component will need.

Lecture 337

UML notation for

provided and required interfaces

• There are three standard ways to show provided and required

interfaces in UML:

– ball and socket symbols

– stereotype notation

– text listings.

Lecture 338

Ball and socket notation for interfaces

Fig. 12.4 from [UML2]

Lecture 339

Stereotype notation for interfaces

Fig. 12.5 from [UML2]

Lecture 340

Listing component interfaces

Fig. 12.6 from [UML2]

This notation additionaly has an <<artifacts>> section listing the

artifacts or physical files manifesting this component

Lecture 341

Showing components working together

Fig. 12.7, 12.8 and 12.9 from [UML2]

At a higher level view, this is a dependency relation between the components

If a component has a required interface, then it needs another class or

component in the system that provides it.

Lecture 342

Example- component diagram presents system

architecture

Lecture 343

Figure 12-10. Focusing on the key components and
interfaces in your system

Example- component diagram presents system

architecture

Lecture 344

Figure 12-11. Focusing on component dependencies and the manifesting
artifacts is useful when you are trying

control the configuration or deployment of your system

Classes that realize a component
A component often contains and uses other classes to implement its functionality.

Such classes are said to realize a component.

There are 3 ways to depict this:

Fig. 12.12 , 12.13, 12.14 from [UML2]

Lecture 345

Ports and internal structure

 There is heavy overlap between certain topics in component

diagrams and composite structures. The ability to have ports and

internal structure is defined for classes in composite structures.

Components inherit this capability and introduce some of their own

features, such as delegation and assembly connectors.

 The topics of a class's internal structure and ports in the context of

composite structures are presented here first (based on Chapter 11

from [UML2] .

Lecture 346

Composite structures

 Composite structures show:

 Internal structures

 Show the parts contained by a class and the relationships

between the parts; this allows you to show context-sensitive

relationships, or relationships that hold in the context of a

containing class

 Ports

 Show how a class is used on your system with ports

 Collaborations

 Show design patterns in your software and, more generally,

objects cooperating to achieve a goal

 Composite structures provide a view of your system's parts and form part of the
logical view of your system's model

Lecture 347

Parts of a class

Fig. 11.6 from [UML2]

When showing the internal structure of a class, you draw its parts,

or items contained by composition, inside the containing class.

Parts are specified by the role they play in the containing class

A part is a set of instances that may exist in an instance of the

containing class at runtime

Lecture 348

Connectors

Fig. 11.9 from [UML2]

Relationships between parts are shown by drawing a connector between them.

A connector is a link that enables communication between parts: it means that

runtime instances of the parts can communicate

Lecture 349

Ports

A port is a point of interaction between a class and the outside world. It represents a distinct way of using a

class, usually by different types of clients.

For example, a Wiki class could have two distinct uses:

•Allowing users to view and edit the Wiki

•Providing maintenance utilities to administrators who want to perform actions such as rolling back the Wiki if

incorrect content is provided

Each distinct use of a class is represented with a port, drawn as a small rectangle on the boundary of the class

Fig. 11.14 from [UML2]

Lecture 350

It's common for classes to have interfaces associated with ports.

You can use ports to group related interfaces to show the services available at that port.

Fig. 11.15 from [UML2]

Lecture 351

Ports and internal structure of

components

Fig. 12.15 and 12.16 from [UML2]

Lecture 352

Delegation connectors

Fig. 12.17 and 12.18 from [UML2]

Delegation connectors show how interfaces correspond to internal parts

Delegation connectors can also connect interfaces of internal parts with ports

Lecture 353

Assembly connectors

Fig. 12.19 from [UML2]

Assembly connectors show that a component requires an interface that

another component provides

Assembly connectors are used when showing composite structure of components

Lecture 354

Black-box and white-box views

Fig. 12.20 from [UML2]

Lecture 355

UML Tools

• Wikipedia List of UML tools

• http://en.wikipedia.org/wiki/List_of_Unified_Modeling_Lan
guage_tools

• StarUML (free StarUML1 version, free StarUML2 Beta
version)

• UMLet (free simple UML drawing tool, includes
component diagrams)

• MS Visio (60 days trial version)

• IBM Rational Software Architect (30 days trial)

Lecture 356

http://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
http://staruml.io/
http://www.umlet.com/
http://office.microsoft.com/en-us/visio/microsoft-visio-2013-top-features-diagram-software-FX103796044.aspx
http://www.ibm.com/developerworks/downloads/r/architect/

57

 Questions?

Lecture 3

