
Lecture 2

Software Reuse and

Component-Based SE

ITSE422

Lecture #2: Software product lines &

COTS product reuse

1

Main References

 Ian Sommerville, Software Engineering, 8th edition, chapter18, 19
(Software Reuse & Components and component models)

 Ivica Crnkovic, Magnus Larsson. Building reliable component based
software systems, Artech House, 2002.

 Roger S. Pressman, Software Engineering: A Practitioner’s Approach,
Eighth Edition, McGraw-Hill Higher Education, 2015

Lecture 22

Topics covered

 Software product lines

 COTS product reuse

Lecture 23

Software product lines

 Software product lines or application families are applications

with generic functionality that can be adapted and configured

for use in a specific context.

 A software product line is a set of applications with a common

architecture and shared components, with each application

specialized to reflect different requirements.

 Adaptation may involve:

 Component and system configuration;

 Adding new components to the system;

 Selecting from a library of existing components;

 Modifying components to meet new requirements.

Lecture 24

Application frameworks and product lines

 Application frameworks rely on object-oriented features such

as polymorphism to implement extensions. Product lines need

not be object-oriented (e.g. embedded software for a mobile

phone)

 Application frameworks focus on providing technical rather

than domain-specific support. Product lines embed domain and

platform information.

 Product lines often control applications for equipment.

 Software product lines are made up of a family of applications,

usually owned by the same organization.

Lecture 25

Product line specialisation

 Platform specialization
 Different versions of the application are developed for different platforms.

(ex: Windows, Solaris and Linux platforms).

 Environment specialization
 Different versions of the application are created to handle different

operating environments e.g. different types of communication equipment.
(ex: emergency services).

 Functional specialization
 Different versions of the application are created for customers with

different requirements. (ex: library automation system).

 Process specialization
 Different versions of the application are created to support different

business processes. (ex: an ordering system may be adapted to cope with a
centralised ordering process in one company and a distributed process in
another.).

Lecture 26

Product line architectures

 Architectures must be structured in such a way to separate

different sub-systems and to allow them to be modified.

 The architecture should also separate entities and their

descriptions and the higher levels in the system access entities

through descriptions rather than directly.

Lecture 27

The architecture of a resource allocation system

Lecture 28

The product line architecture of a vehicle

dispatcher

Lecture 29

Vehicle dispatching

 A specialised resource management system where the aim is to allocate

resources (vehicles) to handle incidents.

 Adaptations include:

 At the UI level, there are components for operator display and communications;

 At the I/O management level, there are components that handle authentication,

reporting and route planning;

 At the resource management level, there are components for vehicle location and

despatch, managing vehicle status and incident logging;

 The database includes equipment, vehicle and map databases.

Lecture 210

Product instance development

Lecture 211

Product instance development

 Elicit stakeholder requirements

 Use existing family member as a prototype

 Choose closest-fit family member

 Find the family member that best meets the requirements

 Re-negotiate requirements

 Adapt requirements as necessary to capabilities of the software

 Adapt existing system

 Develop new modules and make changes for family member

 Deliver new family member

 Document key features for further member development

Lecture 212

Product line configuration

 Design time configuration

 The product line is adapted and changed according to the

requirements of particular customers.

 Deployment time configuration

 The product line is configured by embedding knowledge of the

customer’s requirements and business processes. The software

source code itself is not changed.

Lecture 213

Deployment-time configuration

Lecture 214

Levels of deployment time configuration

 Component selection, where you select the modules in a

system that provide the required functionality.

 Workflow and rule definition, where you define workflows

(how information is processed, stage-by-stage) and validation

rules that should apply to information entered by users or

generated by the system.

 Parameter definition, where you specify the values of specific

system parameters that reflect the instance of the application

that you are creating

Lecture 215

COTS product reuse

 A commercial-off-the-shelf (COTS) product is a software

system that can be adapted for different customers without

changing the source code of the system.

 COTS systems have generic features and so can be

used/reused in different environments.

 COTS products are adapted by using built-in configuration

mechanisms that allow the functionality of the system to be

tailored to specific customer needs.

 For example, in a hospital patient record system, separate input

forms and output reports might be defined for different types of

patient.

Lecture 216

Benefits of COTS reuse

 As with other types of reuse, more rapid deployment of a reliable system may be

possible.

 It is possible to see what functionality is provided by the applications and so it is

easier to judge whether or not they are likely to be suitable.

 Some development risks are avoided by using existing software. However, this

approach has its own risks, as I discuss below.

 Businesses can focus on their core activity without having to devote a lot of

resources to IT systems development.

 As operating platforms evolve, technology updates may be simplified as these are

the responsibility of the COTS product vendor rather than the customer.

Lecture 217

Problems of COTS reuse

 Requirements usually have to be adapted to reflect the functionality and

mode of operation of the COTS product.

 The COTS product may be based on assumptions that are practically

impossible to change.

 Choosing the right COTS system for an enterprise can be a difficult

process, especially as many COTS products are not well documented.

 There may be a lack of local expertise to support systems development.

 The COTS product vendor controls system support and evolution.

Lecture 218

COTS-solution and COTS-integrated systems

COTS-solution systems COTS-integrated systems

Single product that provides the functionality

required by a customer

Several heterogeneous system products are

integrated to provide customized functionality

Based around a generic solution and

standardized processes

Flexible solutions may be developed for

customer processes

Development focus is on system configuration Development focus is on system integration

System vendor is responsible for maintenance System owner is responsible for maintenance

System vendor provides the platform for the

system

System owner provides the platform for the

system

Lecture 219

COTS solution systems

 COTS-solution systems are generic application systems that

may be designed to support a particular business type, business

activity or, sometimes, a complete business enterprise.

 For example, a COTS-solution system may be produced for dentists

that handles appointments, dental records, patient recall, etc.

 Domain-specific COTS-solution systems, such as systems to

support a business function (e.g. document management)

provide functionality that is likely to be required by a range of

potential users.

Lecture 220

ERP systems

 An Enterprise Resource Planning (ERP) system is a generic
system that supports common business processes such as
ordering and invoicing, manufacturing, etc.

 These are very widely used in large companies - they
represent probably the most common form of software reuse.

 The generic core is adapted by including modules and by
incorporating knowledge of business processes and rules.

Lecture 221

The architecture of an ERP system

Lecture 222

ERP architecture

 A number of modules to support different business functions.

 A defined set of business processes, associated with each

module, which relate to activities in that module.

 A common database that maintains information about all

related business functions.

 A set of business rules that apply to all data in the database.

Lecture 223

ERP configuration

 Selecting the required functionality from the system.

 Establishing a data model that defines how the organization’s data will be

structured in the system database.

 Defining business rules that apply to that data.

 Defining the expected interactions with external systems.

 Designing the input forms and the output reports generated by the

system.

 Designing new business processes that conform to the underlying process

model supported by the system.

 Setting parameters that define how the system is deployed on its

underlying platform.

Lecture 224

COTS integrated systems

 COTS-integrated systems are applications that include two or

more COTS products and/or legacy application systems.

 You may use this approach when there is no single COTS

system that meets all of your needs or when you wish to

integrate a new COTS product with systems that you already

use.

Lecture 225

Design choices

 Which COTS products offer the most appropriate

functionality?

 Typically, there will be several COTS products available, which can be

combined in different ways.

 How will data be exchanged?

 Different products normally use unique data structures and formats.

You have to write adaptors that convert from one representation to

another.

 What features of a product will actually be used?

 COTS products may include more functionality than you need and

functionality may be duplicated across different products.

Lecture 226

A COTS-integrated procurement system

Lecture 227

Service-oriented COTS interfaces

 COTS integration can be simplified if a service-oriented

approach is used.

 A service-oriented approach means allowing access to the

application system’s functionality through a standard service

interface, with a service for each discrete unit of functionality.

 Some applications may offer a service interface but, sometimes,

this service interface has to be implemented by the system

integrator. You have to program a wrapper that hides the

application and provides externally visible services.

Lecture 228

Application wrapping

Lecture 229

COTS system integration problems

 Lack of control over functionality and performance

 COTS systems may be less effective than they appear

 Problems with COTS system inter-operability

 Different COTS systems may make different assumptions that means

integration is difficult

 No control over system evolution

 COTS vendors not system users control evolution

 Support from COTS vendors

 COTS vendors may not offer support over the lifetime of the product

Lecture 230

Key points

 Software product lines are related applications that are developed from a common base.

This generic system is adapted to meet specific requirements for functionality, target

platform or operational configuration.

 COTS product reuse is concerned with the reuse of large-scale, off-the-shelf systems.

These provide a lot of functionality and their reuse can radically reduce costs and

development time. Systems may be developed by configuring a single, generic COTS

product or by integrating two or more COTS products.

 Enterprise Resource Planning systems are examples of large-scale COTS reuse. You create

an instance of an ERP system by configuring a generic system with information about the

customer’s business processes and rules.

 Potential problems with COTS-based reuse include lack of control over functionality and

performance, lack of control over system evolution, the need for support from external

vendors and difficulties in ensuring that systems can inter-operate.

Lecture 231

 Questions?

Lecture 232

