
Lecture 11

Software Reuse and

Component-Based SE

ITSE422

Lecture #1: Software Reuse

(An Introduction)

Main References

 Ian Sommerville, Software Engineering, 10th edition, chapter15, 16
(Software Reuse & Components and component models)

 Ivica Crnkovic, Magnus Larsson. Building reliable component based
software systems, Artech House, 2002.

 Roger S. Pressman, Software Engineering: A Practitioner’s Approach,
Eighth Edition, McGraw-Hill Higher Education, 2015

 Component-Based Software Engineering Methods and Metrics.
Umesh Kumar Tiwari and Santosh Kumar, 2021 CRC Press is an
imprint of Taylor & Francis Group, LLC.

Lecture 12

Topics covered

 The reuse landscape

 Application frameworks

Lecture 13

Software reuse

 In most engineering disciplines, systems are designed by

composing existing components that have been used in other

systems.

 Software engineering has been more focused on original

development but it is now recognised that to achieve better

software, more quickly and at lower cost, we need a design

process that is based on systematic software reuse.

 There has been a major switch to reuse-based development

over the past 10 years.

Lecture 14

Reuse-based software engineering

 Application system reuse

 The whole of an application system may be reused either by
incorporating it without change into other systems (COTS reuse) or
by developing application families.

 Component reuse

 Components of an application from sub-systems to single objects may
be reused.

 Object and function reuse

 Software components that implement a single well-defined object or
function may be reused.

Lecture 15

Benefits of software reuse

Benefit Explanation

Increased dependability Reused software, which has been tried and tested in

working systems, should be more dependable than new

software. Its design and implementation faults should have

been found and fixed.

Reduced process risk The cost of existing software is already known, whereas the

costs of development are always a matter of judgment. This

is an important factor for project management because it

reduces the margin of error in project cost estimation. This

is particularly true when relatively large software

components such as subsystems are reused.

Effective use of specialists Instead of doing the same work over and over again,

application specialists can develop reusable software that

encapsulates their knowledge.

6 Lecture 1

Benefits of software reuse

Benefit Explanation

Standards compliance Some standards, such as user interface standards, can be

implemented as a set of reusable components. For example,

if menus in a user interface are implemented using reusable

components, all applications present the same menu formats

to users. The use of standard user interfaces improves

dependability because users make fewer mistakes when

presented with a familiar interface.

Accelerated development Bringing a system to market as early as possible is often

more important than overall development costs. Reusing

software can speed up system production because both

development and validation time may be reduced.

7 Lecture 1

Problems with reuse

Problem Explanation

Increased maintenance

costs

If the source code of a reused software system or component is

not available then maintenance costs may be higher because

the reused elements of the system may become increasingly

incompatible with system changes.

Lack of tool support Some software tools do not support development with reuse. It

may be difficult or impossible to integrate these tools with a

component library system. The software process assumed by

these tools may not take reuse into account. This is particularly

true for tools that support embedded systems engineering, less

so for object-oriented development tools.

Not-invented-here

syndrome

Some software engineers prefer to rewrite components because

they believe they can improve on them. This is partly to do with

trust and partly to do with the fact that writing original software is

seen as more challenging than reusing other people’s software.

8 Lecture 1

Problems with reuse

Problem Explanation

Creating, maintaining, and

using a component library

Populating a reusable component library and ensuring the

software developers can use this library can be expensive.

Development processes have to be adapted to ensure that the

library is used.

Finding, understanding,

and adapting reusable

components

Software components have to be discovered in a library,

understood and, sometimes, adapted to work in a new

environment. Engineers must be reasonably confident of finding

a component in the library before they include a component

search as part of their normal development process.

9 Lecture 1

The reuse landscape

 Although reuse is often simply thought of as the reuse of

system components, there are many different approaches to

reuse that may be used.

 Reuse is possible at a range of levels from simple functions to

complete application systems.

 The reuse landscape covers the range of possible reuse

techniques.

Lecture 110

The reuse landscape

11 Lecture 1

Approaches that support software reuse

Approach Description

Architectural patterns Standard software architectures that support common types of

application systems are used as the basis of applications.

Described in Chapters 6, 11, and 17.

Design patterns Generic abstractions that occur across applications are

represented as design patterns showing abstract and concrete

objects and interactions. Described in Chapter 7.

Component-based

development

Systems are developed by integrating components (collections of

objects) that conform to component-model standards. Described in

Chapter 16.

Application frameworks Collections of abstract and concrete classes are adapted and

extended to create application systems.

Legacy system wrapping Legacy systems (see Chapter 9) are ‘wrapped’ by defining a set of

interfaces and providing access to these legacy systems through

these interfaces.

12 Lecture 1

Approaches that support software reuse

Approach Description

Service-oriented systems Systems are developed by linking shared services, which may be

externally provided. Described in Chapter 18.

Software product lines An application type is generalized around a common architecture

so that it can be adapted for different customers.

COTS product reuse Systems are developed by configuring and integrating existing

application systems.

ERP systems Large-scale systems that encapsulate generic business

functionality and rules are configured for an organization.

Configurable vertical

applications

Generic systems are designed so that they can be configured to

the needs of specific system customers.

13 Lecture 1

Approaches that support software reuse

Approach Description

Program libraries Class and function libraries that implement commonly used

abstractions are available for reuse.

Model-driven engineering Software is represented as domain models and implementation

independent models and code is generated from these models.

Described in Chapter 5.

Program generators A generator system embeds knowledge of a type of application

and is used to generate systems in that domain from a user-

supplied system model.

Aspect-oriented software

development

Shared components are woven into an application at different

places when the program is compiled. Described in Chapter 31.

14 Lecture 1

Reuse planning factors

 The development schedule for the software.

 The expected software lifetime.

 The background, skills and experience of the development

team.

 The criticality of the software and its non-functional

requirements.

 The application domain.

 The execution platform for the software.

Lecture 115

Application frameworks

16 Lecture 1

Framework definition

“..an integrated set of software artefacts (such as classes, objects and

components) that collaborate to provide a reusable architecture for a

family of related applications.”

17 Lecture 1

Application frameworks

 Frameworks are moderately large entities that can be reused.

They are somewhere between system and component reuse.

 Frameworks are a sub-system design made up of a collection

of abstract and concrete classes and the interfaces between

them.

 The sub-system is implemented by adding components to fill in

parts of the design and by instantiating the abstract classes in

the framework.

Lecture 118

Framework classes

 System infrastructure frameworks

 Support the development of system infrastructures such as
communications, user interfaces and compilers.

 Middleware integration frameworks

 Standards and classes that support component communication and
information exchange.

 Enterprise application frameworks

 Support the development of specific types of application such as
telecommunications or financial systems.

Lecture 119

Web application frameworks

 Support the construction of dynamic websites as a front-end

for web applications.

 WAFs (Web application frameworks) are now available for all

of the commonly used web programming languages e.g. Java,

Python, Ruby, etc.

 Interaction model is based on the Model-View-Controller

composite pattern.

Lecture 120

Model-view controller

 System infrastructure framework for GUI design.

 Allows for multiple presentations of an object and separate

interactions with these presentations.

 MVC framework involves the instantiation of a number of

patterns.

Lecture 121

The Model-View-Controller pattern

22 Lecture 1

WAF features

 Security

 WAFs may include classes to help implement user authentication (login) and access.

 Dynamic web pages

 Classes are provided to help you define web page templates and to populate these dynamically

from the system database.

 Database support

 The framework may provide classes that provide an abstract interface to different databases.

 Session management

 Classes to create and manage sessions (a number of interactions with the system by a user) are

usually part of a WAF.

 User interaction

 Most web frameworks now provide AJAX support , which allows more interactive web pages to be

created.

Lecture 123

Extending frameworks

 Frameworks are generic and are extended to create a more specific

application or sub-system. They provide a skeleton architecture for the

system.

 Extending the framework involves

 Adding concrete classes that inherit operations from abstract classes in the

framework;

 Adding methods that are called in response to events that are recognised

by the framework.

 Problem with frameworks is their complexity which means that it takes

a long time to use them effectively.

Lecture 124

Inversion of control in frameworks

25 Lecture 1

Key points

 Most new business software systems are now developed by reusing knowledge

and code from previously implemented systems.

 There are many different ways to reuse software. These range from the reuse of

classes and methods in libraries to the reuse of complete application systems.

 The advantages of software reuse are lower costs, faster software development

and lower risks. System dependability is increased. Specialists can be used more

effectively by concentrating their expertise on the design of reusable components.

 Application frameworks are collections of concrete and abstract objects that are

designed for reuse through specialization and the addition of new objects. They

usually incorporate good design practice through design patterns.

Lecture 126

27

 Questions?

Lecture 1

