
1

Advanced Programming

Language

ITSE322

Java Collection Framework

Lecture 03

2

Arrays

• array: An object that stores many values of the same type.

▪ element: One value in an array

▪ index: A 0 to n-1 integer value that represents the position of an

element within the array.

▪ length: Number of elements in the array.

index 0 1 2 3 4 5 6 7 8 9

value 12 49 -2 26 5 17 -6 84 72 3

element 1 element 5 element 10

length = 10

3

Array declaration

type[] name = new type[length];

▪ Length is explicitly provided.

int[] numbers = new int[5];

type[] name = {value, value, … value};

▪ length is calculated automatically from number of values provided.
Example:

int[] numbers = {12, 49, -2, 26, 5, 17, -6};

index 0 1 2 3 4

value 0 0 0 0 0

index 0 1 2 3 4 5 6

value 12 49 -2 26 5 17 -6

4

Accessing elements

name[index] // access

name[index] = value; // modify

name.length // length is a property

• Legal indexes: between 0 and length - 1.

int[] numbers = {12, 49, -2, 26, 5, 17, -6};

numbers[3] = 88;

for (int i = 0; i < numbers.length; i++) {

System.out.print(numbers[i] + " ");

}

index 0 1 2 3 4 5 6

value 12 49 -2 88 5 17 -6

5

Accessing elements

• Legal indexes: between 0 and length - 1.

int[] numbers = {12, 49, -2, 26, 5, 17, -6};

numbers[3] = 88;

// Be careful with indices

System.out.println(numbers[-1]); // exception

System.out.println(numbers[7]); // exception

// What happens here??

numbers[7] = 88;

index 0 1 2 3 4 5 6

value 12 49 -2 88 5 17 -6

6

Limitations of arrays

• Arrays are useful, but they have many limitations:

▪ size cannot be changed after the array has been constructed

▪ no built-in method to print the array

▪ no built-in method to insert/remove an element

▪ no search feature

▪ no sort feature

▪ no easy duplicate detection/removal

▪ inconsistent syntax with other objects (length vs. length() vs. size())

▪ ...

7

Collections

• collection: An object that stores data (objects).

▪ the objects of stored data are called elements

▪ typical operations: add, remove, clear, contains (search), size

▪ some collections maintain an ordering; some allow duplicates

▪ data structure: underlying implementation of a collection's behavior

• most collections are based on an array or a set of linked node objects

▪ examples found in the Java libraries:

•ArrayList, LinkedList, HashMap, TreeSet, PriorityQueue

▪ all collections are in the java.util package

• You must import the util package to use them

import java.util.*;

8

Java collection framework

9

Abstract data types (ADTs)

• abstract data type (ADT): A specification of a collection of data and
the operations that can be performed on it.

▪ Describes what a collection does, not how it does it.

• Java's collection framework uses interfaces to describe ADTs:

▪ Collection, List, Map, Queue, Set

• An ADT can be implemented in multiple ways by classes:

▪ ArrayList and LinkedList implement the List ADT

▪ HashSet and TreeSet implement the Set ADT

▪ HashMap implement the Map ADT

10

Constructing a collection

Interface<Type> name = new Class<Type>();

• Note: Use the ADT interface as the variable type.
▪ Use the specific collection implementation class on the right.

• Specify the type of its elements between < and >.
▪ This is called a type parameter or a generic class.

▪ Allows the same ArrayList class to store lists of different types.

List<String> names = new ArrayList<String>();

names.add("Ali Salem");

names.add(“Salma Ali");

11

Why use ADTs?

• Q: Why would we want more than one kind of data types.?

▪ (e.g. Why do we need both ArrayList and LinkedList?)

• A: Each implementation is more efficient at certain tasks.

▪ ArrayList is faster for adding/removing at the end;
LinkedList is faster for adding/removing at the front/middle.

▪ You choose the optimal implementation for your task.

• Q: Why declare our variables using interface types (e.g. List)?

▪ (e.g. List<String> list = new ArrayList<String>();)

• A: To minimize the code changes if we decided to use a different
implementation later.

12

Lists

• list: a collection storing an ordered sequence of elements

▪ each element is accessible by a 0-based index

▪ a list has a size (number of elements that have been added)

▪ elements can be added to the front, back, or anywhere

▪ in Java, represented by the List interface, implemented
by the ArrayList and LinkedList classes

13

List methods

constructor()
constructor(list)

creates a new empty list,
or a set based on the elements of another list

add(value) appends value at end of list

add(index, value) inserts given value just before the given index,
shifting subsequent values to the right

clear() removes all elements of the list

indexOf(value) returns first index where given value is found in list
(-1 if not found)

get(index) returns the value at given index

remove(index) removes/returns value at given index, shifting
subsequent values to the left

set(index, value) replaces value at given index with given value

size() returns the number of elements in list

toString() returns a string representation of the list
such as "[3, 42, -7, 15]"

14

List methods 2

addAll(list)
addAll(index, list)

adds all elements from the given list to this list
(at the end of the list, or inserts them at the given index)

contains(value) returns true if given value is found somewhere in this list

containsAll(list) returns true if this list contains every element from given list

equals(list) returns true if given other list contains the same elements

iterator()

listIterator()

returns an object used to examine the contents of the list

lastIndexOf(value) returns last index value is found in list (-1 if not found)

remove(value) finds and removes the given value from this list

removeAll(list) removes any elements found in the given list from this list

retainAll(list) removes any elements not found in given list from this list

subList(from, to) returns the sub-portion of the list between
indexes from (inclusive) and to (exclusive)

toArray() returns the elements in this list as an array

15

List implementation

•ArrayList is built using an "unfilled" array and a size field to
remember how many elements have been added

•LinkedList is built using a chain of small "node" objects, one for
each element of the data, with a link to a "next" node object

index 0 1 2 3 4 5 6 7 8 9

value 42 -3 17 0 0 0 0 0 0 0

size 3

front

size 3

data next

42

data next

-3

data next

17

element 0 element 1 element 2

16

Stacks and queues

• stack: aka LIFO data structure - Retrieves elements in the reverse of the
order they were added.

• queue: aka FIFO data structure - Retrieves elements in the same order
they were added.

• Q: why do we also have both stacks and queues?

▪ A: Sometimes it is good to have a collection that is less powerful, but is
optimized to perform certain operations very quickly.

stack

queue

top 3

2

bottom 1

pop, peekpush

front back

1 2 3
addremove, peek

17

Class Stack

Stack<Integer> s = new Stack<Integer>();

s.push(42);

s.push(-3);

s.push(17); // bottom [42, -3, 17] top

System.out.println(s.pop()); // 17

Stack<E>() constructs a new stack with elements of type E

push(value) places given value on top of stack

pop() removes top value from stack and returns it;
throws EmptyStackException if stack is empty

peek() returns top value from stack without removing it;
throws EmptyStackException if stack is empty

size() returns number of elements in stack

isEmpty() returns true if stack has no elements

18

Interface Queue

Queue<Integer> q = new LinkedList<Integer>();

q.add(42);

q.add(-3);

q.add(17); // front [42, -3, 17] back

System.out.println(q.remove()); // 42

▪ When constructing a queue you must use a
new LinkedList object instead of a Queue object. (Why?)

add(value) places given value at back of queue

remove() removes value from front of queue and returns it;
throws a NoSuchElementException if queue is empty

peek() returns front value from queue without removing it;
returns null if queue is empty

size() returns number of elements in queue

isEmpty() returns true if queue has no elements

19

Queue uses

• As with stacks, must pull contents out of queue to view them.

// process (and destroy) an entire queue

while (!q.isEmpty()) {

do something with
q.remove();

}

▪ Examining each element exactly once.

int size = q.size();

for (int i = 0; i < size; i++) {

do something with the queue

}

20

Stack/Queue implementation

• Stacks are almost always implemented using an array (why?)

• Queues are built using a doubly-linked list with a front and back
reference, or using an array with front and back indexes (why?)

index 0 1 2 3 4 5 6 7 8 9

value 42 -3 17 0 0 0 0 0 0 0

size 3

front

back

size 3

prev data next

42

prev data next

42

prev data next

42

21

Stack implementation

import java.util.Stack;
public class StackExample {
 public static void main(String[] args) {
 Stack<String> stack = new Stack<>();
 // Pushing elements onto the Stack
 stack.push("Alice");
 stack.push("Bob");
 stack.push("Charlie");
 // Displaying the Stack
 System.out.println("Stack elements: " + stack);
 // Accessing and removing elements
 String topElement = stack.pop();
 System.out.println("Top element: " + topElement);
 System.out.println("Updated Stack: " + stack);
 // Accessing the element at the top
 String elementAtTop = stack.peek();
 System.out.println("Element at the top: " + elementAtTop);
 // Checking if the Stack is empty
 boolean isEmpty = stack.isEmpty();
 System.out.println("Is the Stack empty? " + isEmpty);
 }
}

22

Queue implementation

import java.util.LinkedList;
import java.util.Queue;
public class QueueExample {
 public static void main(String[] args) {
 Queue<String> queue = new LinkedList<>();
 // Adding elements to the Queue
 queue.offer("Alice");
 queue.offer("Bob");
 queue.offer("Charlie");
 // Displaying the Queue
 System.out.println("Queue elements: " + queue);
 // Accessing and removing elements
 String firstElement = queue.poll();
 System.out.println("First element: " + firstElement);
 System.out.println("Updated Queue: " + queue);
 // Accessing the element at the front
 String frontElement = queue.peek();
 System.out.println("Front element: " + frontElement);
 // Checking if the Queue is empty
 boolean isEmpty = queue.isEmpty();
 System.out.println("Is the Queue empty? " + isEmpty);
 }
}

23

Sets

• set: A collection of unique values (no duplicates allowed)
that can perform the following operations efficiently:

▪ add, remove, search (contains)

▪ We don't think of a set as having indexes; we just
add things to the set in general and don't worry about order.

set.contains("to") true

set

"the"
"of"

"from"

"to"

"she"
"you"

"him""why"

"in"

"down"

"by"

"if"

set.contains("be") false

24

Set implementation

• in Java, sets are represented by Set interface in java.util

•Set is implemented by HashSet and TreeSet classes

▪ HashSet: implemented using a "hash table" array;
very fast

▪ TreeSet: implemented using a "binary search tree";
pretty fast

▪ LinkedHashSet: stores in order of insertion

25

Set methods

List<String> list = new ArrayList<String>();
...
Set<Integer> set = new TreeSet<Integer>(); // empty

Set<String> set2 = new HashSet<String>(list);

constructor()
constructor(collection)

creates a new empty set,
or a set based on the elements of a collection

add(value) adds the given value to the set

contains(value) returns true if the given value is found in this set

remove(value) removes the given value from the set

clear() removes all elements of the set

size() returns the number of elements in list

isEmpty() returns true if the set's size is 0

toString() returns a string such as "[3, 42, -7, 15]"

26

Set operations

addAll(collection) adds all elements from the given collection to this set

containsAll(coll) returns true if this set contains every element from given set

equals(set) returns true if given other set contains the same elements

iterator() returns an object used to examine set's contents (seen later)

removeAll(coll) removes all elements in the given collection from this set

retainAll(coll) removes elements not found in given collection from this set

toArray() returns an array of the elements in this set

addAll retainAll removeAll

27

Sets and ordering

•HashSet : elements are stored in an unpredictable order

Set<String> names = new HashSet<String>();

names.add(“Ali");

names.add(“Ahmed");

names.add(“Aysha");

names.add(“Fatima");

System.out.println(names);

// [Ali, Ahmed, Aysha, Fatima]

•TreeSet : elements are stored in their "natural" sorted order
Set<String> names = new TreeSet<String>();
...

// [Ahmed, Ali, Aysha, Fatima]

•LinkedHashSet : elements stored in order of insertion
Set<String> names = new LinkedHashSet<String>();
...

// [Ali, Ahmed, Aysha, Fatima]

28

Comparable

• If you want to store objects of your own class in a TreeSet:

▪ Your class must implement the Comparable interface to define a
natural ordering function for its objects.

public interface Comparable<E> {
public int compareTo(E other);

}

• A call to compareTo must return:

a value < 0 if this object comes "before" the other object,

a value > 0 if this object comes "after" the other object,

or 0 if this object is considered "equal" to the other

29

The "for each" loop

for (type name : collection) {
statements;

}

• Provides a clean syntax for looping over the elements of a Set,
List, array, or other collection

Set<Double> grades = new HashSet<Double>();
...

for (double grade : grades) {

System.out.println("Student's grade: " + grade);

}

▪ needed because sets have no indexes; can't get element i

30

The "for each" loop

import java.util.HashSet;

import java.util.Set;

public class SetForEachExample {

public static void main(String[] args) {

Set<String> set = new HashSet<>();

// Adding elements to the Set

set.add("Alice");

set.add("Bob");

set.add("Charlie");

// Using foreach loop to iterate over the Set

System.out.println("Set elements:");

for (String element : set) {

System.out.println(element);

}

}

}

31

The "for each" loop

32

Set implementation

•TreeSet is implemented using a binary search tree

•HashSet is built using a special kind of array called a hash table

index 0 1 2 3 4 5 6 7 8 9

value 60 91 42 -3 0 55 0 87 0 29

size 7

9160

8729

55

42-3

root

33

TreeSet example

34

HashSet example

	Slide 1: Advanced Programming Language ITSE322
	Slide 2: Arrays
	Slide 3: Array declaration
	Slide 4: Accessing elements
	Slide 5: Accessing elements
	Slide 6: Limitations of arrays
	Slide 7: Collections
	Slide 8: Java collection framework
	Slide 9: Abstract data types (ADTs)
	Slide 10: Constructing a collection
	Slide 11: Why use ADTs?
	Slide 12: Lists
	Slide 13: List methods
	Slide 14: List methods 2
	Slide 15: List implementation
	Slide 16: Stacks and queues
	Slide 17: Class Stack
	Slide 18: Interface Queue
	Slide 19: Queue uses
	Slide 20: Stack/Queue implementation
	Slide 21: Stack implementation
	Slide 22: Queue implementation
	Slide 23: Sets
	Slide 24: Set implementation
	Slide 25: Set methods
	Slide 26: Set operations
	Slide 27: Sets and ordering
	Slide 28: Comparable
	Slide 29: The "for each" loop
	Slide 30: The "for each" loop
	Slide 31: The "for each" loop
	Slide 32: Set implementation
	Slide 33: TreeSet example
	Slide 34: HashSet example

