
Java Programming: From Problem

Analysis to Program Design

Chapter 3

Introduction to Objects and the

String Class

2Java Programming: From Problem Analysis to Program Design, 3e

Chapter Objectives

• Learn about objects and reference variables

• Explore how to use predefined methods in a

program

• Become familiar with the class String

3Java Programming: From Problem Analysis to Program Design, 3e

Input/Output

• Input Data

• Format Output

• Output Results

• Format Output

• Read From and Write to Files

4Java Programming: From Problem Analysis to Program Design, 3e

Parsing Numeric Strings

• A string consisting of only integers or decimal
numbers is called a numeric string

• 1. To convert a string consisting of an integer to
a value of the type int, we use the following
expression:

 Integer.parseInt(strExpression)

 Integer.parseInt("6723") = 6723

 Integer.parseInt("-823") = -823

5Java Programming: From Problem Analysis to Program Design, 3e

Parsing Numeric Strings

(continued)

• 2. To convert a string consisting of a decimal
number to a value of the type float, we use the
following expression:
 Float.parseFloat(strExpression)

 Float.parseFloat("34.56") = 34.56

 Float.parseFloat("-542.97") = -542.97

Parsing Numeric Strings

(continued)

• 3. To convert a string consisting of a

decimal number to a value of the type

double, we use the following expression:
Double.parseDouble(strExpression)

Double.parseDouble("345.78") = 345.78

Double.parseDouble("-782.873") = -

782.873

Java Programming: From Problem Analysis to Program Design, 3e 6

7Java Programming: From Problem Analysis to Program Design, 3e

Parsing Numeric Strings

(continued)
• Integer, Float, and Double are classes

designed to convert a numeric string into a

number

• These classes are called wrapper classes
• parseInt is a method of the class

Integer, which converts a numeric integer

string into a value of the type int

Parsing Numeric Strings

(continued)

• parseFloat is a method of the class

Float and is used to convert a numeric

decimal string into an equivalent value of
the type float

• parseDouble is a method of the class

Double, which is used to convert a

numeric decimal string into an equivalent
value of the type double

Java Programming: From Problem Analysis to Program Design, 3e 8

9Java Programming: From Problem Analysis to Program Design, 3e

Using Dialog Boxes for

Input/Output

• Use a graphical user interface (GUI)

• class JOptionPane

– Contained in package javax.swing

– Contains methods: showInputDialog and

showMessageDialog

• Syntax:

str = JOptionPane.showInputDialog(strExpression)

• Program must end with System.exit(0);

10Java Programming: From Problem Analysis to Program Design, 3e

Parameters for the Method
showMessageDialog

11Java Programming: From Problem Analysis to Program Design, 3e

JOptionPane Options for the

Parameter messageType

12Java Programming: From Problem Analysis to Program Design, 3e

JOptionPane Example

13Java Programming: From Problem Analysis to Program Design, 3e

Formatting the Output Using the
String Method format

Example 3-14
double x = 15.674;

double y = 235.73;

double z = 9525.9864;

int num = 83;

String str;

14Java Programming: From Problem Analysis to Program Design, 3e

File Input/Output

• File: area in secondary storage used to hold
information

• You can also initialize a Scanner object to

input sources other than the standard input

device by passing an appropriate argument in
place of the object System.in.

• We make use of the class FileReader.

15Java Programming: From Problem Analysis to Program Design, 3e

File Input/Output (continued)

• Suppose that the input data is stored in a file,
say prog.dat, and this file is on the floppy
disk A

• The following statement creates the Scanner

object inFile and initializes it to the file

prog.dat

• Scanner inFile = new Scanner

(new FileReader("prog.dat"));

File Input/Output (continued)

• Next, you use the object inFile to input

data from the file prog.dat just the way

you used the object console to input

data from the standard input device using
the methods next, nextInt,

nextDouble, and so on

Java Programming: From Problem Analysis to Program Design, 3e 16

17Java Programming: From Problem Analysis to Program Design, 3e

File Input/Output (continued)

18Java Programming: From Problem Analysis to Program Design, 3e

File Input/Output (continued)

• Java file I/O process
1. Import necessary classes from the packages

java.util and java.io into the program

2. Create and associate appropriate objects with the

input/output sources

3. Use the appropriate methods associated with the

variables created in Step 2 to input/output data

4. Close the files

19Java Programming: From Problem Analysis to Program Design, 3e

Example 3-17

Suppose an input file, say employeeData.txt, consists of the
following data:

Emily Johnson 45 13.50

Scanner inFile = new Scanner

(new FileReader("employeeData.txt"));

String firstName;

String lastName;

double hoursWorked;

double payRate;

double wages;

firstName = inFile.next();

lastName = inFile.next();

hoursWorked = inFile.nextDouble();

payRate = inFile.nextDouble();

wages = hoursWorked * payRate;

inFile.close(); //close the input file

File Input/Output (continued)

20Java Programming: From Problem Analysis to Program Design, 3e

Storing (Writing) Output to a File

• To store the output of a program in a file, you use
the class PrintWriter

• Declare a PrintWriter variable and associate
this variable with the destination

• Suppose the output is to be stored in the file
prog.out on floppy disk A

Storing (Writing) Output to a File

(continued)

• Consider the following statement:
PrintWriter outFile = new
PrintWriter("prog.out");

• This statement creates the PrintWriter
object outFile and associates it with the
file prog.out

• You can now use the methods print,
println, printf, and flush with
outFile just the same way they have
been used with the object System.out

Java Programming: From Problem Analysis to Program Design, 3e 21

22Java Programming: From Problem Analysis to Program Design, 3e

Storing (Writing) Output to a File

(continued)

• The statement:

outFile.println("The paycheck is: $" + pay);

stores the output—The paycheck is:
$565.78—in the file prog.out
-This statement assumes that the value of the variable
pay is 565.78

Storing (Writing) Output to a File

(continued)
• Step 4 requires closing the file; you close

the input and output files by using the
method close

inFile.close();

outFile.close();

• Closing the output file ensures that the
buffer holding the output will be emptied,
that is, the entire output generated by the
program will be sent to the output file

Java Programming: From Problem Analysis to Program Design, 3e 23

24Java Programming: From Problem Analysis to Program Design, 3e

• During program execution, various things can

happen; for example, division by zero or

inputting a letter for a number

• In such cases, we say that an exception has

occurred.

• If an exception occurs in a method, the method

should either handle the exception or throw it for

the calling environment to handle

• If an input file does not exist, the program

throws a FileNotFoundException

throws clause

throws clause (continued)

• If an output file cannot be created or

accessed, the program throws a

FileNotFoundException

• For the next few chapters, we will simply

throw the exceptions
• Because we do not need the method main to

handle the FileNotFoundException

exception, we will include a command in the
heading of the method main to throw the

FileNotFoundException exception
Java Programming: From Problem Analysis to Program Design, 3e 25

26Java Programming: From Problem Analysis to Program Design, 3e

Skeleton of I/O Program

27Java Programming: From Problem Analysis to Program Design, 3e

Programming Example: Movie Ticket

Sale and Donation to Charity
• Input: movie name, adult ticket price, child ticket price,

number of adult tickets sold, number of child tickets sold,

percentage of gross amount to be donated to charity

• Output:

28Java Programming: From Problem Analysis to Program Design, 3e

Programming Example: Movie Ticket

Sale and Donation to Charity

(continued)
• Import appropriate packages

• Get inputs from user using
JOptionPane.showInputDialog

• Perform appropriate calculations

• Display output using
JOptionPane.showMessageDialog

29Java Programming: From Problem Analysis to Program Design, 3e

Programming Example:

Student Grade

• Input: file containing student’s first name,

last name, five test scores

• Output: file containing student’s first name,

last name, five test scores, average of five

test scores

30Java Programming: From Problem Analysis to Program Design, 3e

Programming Example:

Student Grade (continued)

• Import appropriate packages

• Get input from file using the classes
Scanner and FileReader

• Read and calculate the average of test
scores

• Write to output file using the class
PrintWriter

• Close files

31Java Programming: From Problem Analysis to Program Design, 3e

Chapter Summary

• Primitive type variables store data into their

memory space

• Reference variables store the address of the

object containing the data

• An object is an instance of a class

32Java Programming: From Problem Analysis to Program Design, 3e

Chapter Summary (continued)

• Operator new is used to instantiate an

object

• Garbage collection is reclaiming memory

not being used

• To use a predefined method you must know
its name and the class and package it
belongs to

• The dot (.) operator is used to access a
certain method in a class

Chapter Summary (continued)

• Methods of the class String are used
to manipulate input and output data

• Dialog boxes can be used to input data and
output results

• Data can be read from and written to files

• Data can be formatted using the String
method format

Java Programming: From Problem Analysis to Program Design, 3e 33

	Slide 1: Java Programming: From Problem Analysis to Program Design Chapter 3
	Slide 2: Chapter Objectives
	Slide 3: Input/Output
	Slide 4: Parsing Numeric Strings
	Slide 5: Parsing Numeric Strings (continued)
	Slide 6: Parsing Numeric Strings (continued)
	Slide 7: Parsing Numeric Strings (continued)
	Slide 8: Parsing Numeric Strings (continued)
	Slide 9: Using Dialog Boxes for Input/Output
	Slide 10: Parameters for the Method showMessageDialog
	Slide 11: JOptionPane Options for the Parameter messageType
	Slide 12: JOptionPane Example
	Slide 13: Formatting the Output Using the String Method format
	Slide 14: File Input/Output
	Slide 15: File Input/Output (continued)
	Slide 16: File Input/Output (continued)
	Slide 17: File Input/Output (continued)
	Slide 18: File Input/Output (continued)
	Slide 19: File Input/Output (continued)
	Slide 20: Storing (Writing) Output to a File
	Slide 21: Storing (Writing) Output to a File (continued)
	Slide 22: Storing (Writing) Output to a File (continued)
	Slide 23: Storing (Writing) Output to a File (continued)
	Slide 24: throws clause
	Slide 25: throws clause (continued)
	Slide 26: Skeleton of I/O Program
	Slide 27: Programming Example: Movie Ticket Sale and Donation to Charity
	Slide 28: Programming Example: Movie Ticket Sale and Donation to Charity (continued)
	Slide 29: Programming Example: Student Grade
	Slide 30: Programming Example: Student Grade (continued)
	Slide 31: Chapter Summary
	Slide 32: Chapter Summary (continued)
	Slide 33: Chapter Summary (continued)

