Network Design and Management

1. INTRODUCTION

ITNT412

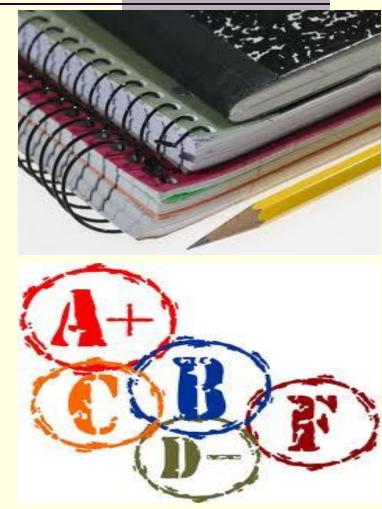
CHAPTER 1

Dr. Mahmud Mansour

Introduce yourselves

Attending ITNT 412

https://www.youtube.com/watch?v=d2xb2tTqDX8


Succeeding in INTN412

Preparation and organization

- Pen/pencil, Notebook
- Taking notes
- Print slides

Grades

- Not the only deciding factor
- 25 % Exam 1
- 25 % Home work, Quiz and Team work.
- 50% Final Exam.
- Absent from Test or Exam = Zero.

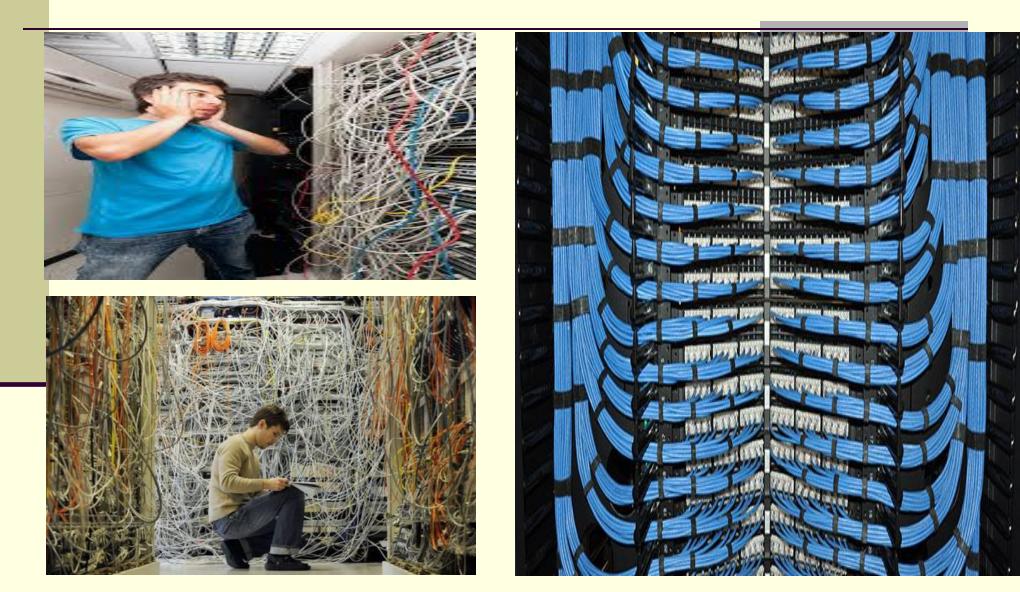
My background

- **Prof : School of IT. Department of Networking**
- BEng, MSc Telecom and Network Engineering. Salford University.
- PhD Wireless Network. Bradford University.
- **Networking Consultant and Networking Instructor**
 - Date Center Design and Operation Management Expert.
 - Cisco certified Academic Instructor (CCAI).
 - Cisco certified Academic Instructor (Wireless LANs).
 - Cisco certified Academic Instructor (Voice and Data Cabling).
 - **CCNA and CCNP** CCDA and CCDP.

Other Previous Work Experience

- College of Telecom and IT Saudi Arabia
- Department of Electrical and Electronic Engineering. Imam University Saudi Arabia

Contents of Course


Part - 1 Identifying Your Customer's Needs and Goals.

Part - 2 Logical Network Design.

Part - 3 Physical Network Design.

Part - 4 Testing, Optimizing, and Documenting Your Network Design.

Part - 1 Identifying Your Customer's Needs and Goals.

Terminology

Internetwork

a collection of interconnected networks.

Design

a preliminary sketch or outline showing the main features of something to be executed.

Network design

involves decisions on several issues including topology, architecture, flexibility, cost etc.

Network management

The process of controlling a network so as to maximize its efficiency and productivity.

Traditional Network Design

Based on a set of general rules

- "80/20"
- "Bridge when you can, route when you must"
- Can't deal with scalability & complexity
- Focused on capacity planning
 - Throw more bandwidth at the problem
 - No consideration to delay optimization
 - No guarantee of service quality
 - Less importance given to network RMA (Reliability, Maintainability, and Availability) compared to throughput

Traditional Network Design Methodology

- Many network design tools and methodologies in use today resemble the "connect-the-dots" game
- These tools let you place internetworking devices on a palette and connect them with LAN or WAN media
- Problem with this methodology:
 - It skips the steps of analyzing a customer's requirements, and selecting devices and media based on those requirements

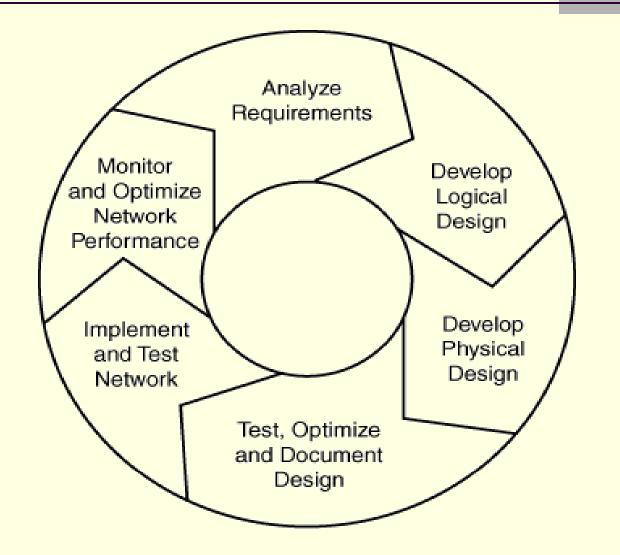
Top-Down Network Design Methodology (1/2)

Good network design

- Recognizes customer's requirements
- May specify a required level of network performance, i.e., service level
- Includes difficult network design choices and tradeoffs that must be made when designing the logical network before any physical devices or media are selected
- When a customer expects a quick response to a network design request
 - A bottom-up (connect-the-dots) network design methodology can be used, if the customer's applications and goals are well known

Top-Down Network Design Methodology (2/2)

- Network designers often think they understand a customer's applications and requirements.
- However, after the network installation, they may discover that:
 - They did not capture the customer's most important needs
 - Unexpected scalability and performance problems appear as the number of network users increases


Top-Down Network Design Process (1/2)

- Begins at the upper layers of the OSI reference model before moving to the lower layers
 - Focuses on applications, sessions, and data transport before the selection of routers, switches, and media that operate at the lower layers
- It is an iterative process:
 - It is important to first get an overall view of a customer's requirements
 - More detail can be gathered later on protocol behavior, scalability requirements, technology preferences, etc.

Top-Down Network Design Process (2/2)

- Recognizes that the logical model and the physical design may change as more information is gathered
- A top-down approach lets a network designer get "the big picture" first and then spiral downward into detailed technical requirements and specifications

Network Design and Implementation Cycle

Network Design and Implementation Cycle (1/3)

Analyze requirements:

- Interviews with users and technical personnel
- Understand business and technical goals for a new or enhanced system
- Characterize the existing network: logical and physical topology, and network performance
- Analyze current and future network traffic, including traffic flow and load, protocol behavior, and QoS requirements

Network Design and Implementation Cycle (2/3)

Develop the logical design:

- Deals with a logical topology for the new or enhanced network
- Network layer addressing and naming
- Switching and routing protocols
- Security planning
- Network management design
- Initial investigation into which service providers can meet WAN and remote access requirements

Network Design and Implementation Cycle (3/3)

Develop the physical design:

- Specific technologies and products to realize the logical design are selected
- The investigation into service providers must be completed during this phase

Test, optimize, and document the design:

- Write and implement a test plan
- Build a prototype or pilot
- Optimize the network design
- Document your work with a network design proposal