ITMC403 Parallel and Distributed
Computing

Dependence analysis

Fundamental Assumption :

e When can two statements execute in parallel?
e On one processor:
statement 1;
statement 2;

e On two processors:
processor 1: processor 2:

statement 1; statement 2;

e Processors execute independently: no control over order of execution
between processors

Fundamental Assumption (Cont|):

e When can two statements execute in parallel?

e On two processors:

e Possibility 1
processor 1: processor 2:
statement1; = e
--------------- statement 2;

e Possibility 2
processor 1: processor 2:
--------------- statement 1;
statement?2; == -

Their order of execution must not matter! In other words,
statement1; statement2;
e must be equivalent to
statement2; statement1;

Examples

e EXAMPLE 1
e a=1 -
o b=2;

e EXAMPLE 2
e a=1, =
e b=a =

e EXAMPLE 3
e a=f(x), >
e b=a =

e EXAMPLE 4
e b=a =
e a=1,;

e EXAMPLE 5
o a=1 >

e a=2

Statements can be executed in parallel.

Statements cannot be executed in parallel
Program modifications may make it possible.

May not be wise to change the program
(sequential execution would take longer).

Statements cannot be executed in parallel.

Statements cannot be executed in parallel.

0000
o000
4
Types of Dependences :
True (flow) dependence -RAW read after write
e Statements S7, S2
S2 has a true dependence on S1
iff
S2 reads a value written by S71
e Denoted by S7d S2
Example:
The first statement writes into a location that is read by the second.
S, X=..
S, =X

We write S, d S..

Types of Dependences (cont.) |

Anti-dependence -WAR write after read
e Statements S7, S2

S2 has a anti-dependence on S1
iff
S2 writes a value read by S1
e Denoted by S71d-7S2

Example:

The first statement reads from a location into which the second
statement writes.

S, =X
S, X=..
An anti-dependence is denote by S, d-7 S,

Types of Dependences (cont.) |

Output dependence -WAW write after write
e Statements S7, S2

S2 has a output dependence on S171
iff
S2 writes a value written by S1

e Denoted by S71d9S2

Example:
both statements write into the same location.
S, X=..
S, X=..

We write S; d? S,

When can 2 statements execute in parallel?

S1 and S2 can execute in parallel

Iff

there are no dependences between S71 and S2
— true dependences
— anti-dependences
— output dependences

Some dependences can be removed.

Data Dependence in Loops

Parallelism often occurs in loops.

for(i=0; i<100; i++)
afil = i

e No dependences.
e lterations can be executed in parallel.

Data Dependence in Loops

(cont.) :

Parallelism often occurs in loops.

for(i=0; i<100; i++) {
afil = i
bli] = 2%
/

Iterations and statements can be executed in parallel.

Data Dependence in Loops

(cont.) :

Parallelism often occurs in loops.

for(i=1; i<100; i++)
afif = H(afi-1]);

e Dependence between ali] and ali-1].
e Loop iterations are not parallelizable.

Data Dependence in Loops

(cont.) :

Parallelism often occurs in loops.

for(i=1; i<100; i++)
afif = H(afi-1]);

e Dependence between ali] and ali-1].
e Loop iterations are not parallelizable.

Data Dependence in Loops sel:
(cont.) T

e Loop-Carried Dependence

e A loop-carried dependence is a dependence that is present only
if the statements occur in two different instances of a loop

o Otherwise, we call it a loop-independent dependence

e Loop-carried dependences limit loop iteration parallelization

Data Dependence in Loops

(cont.) :

e Loop-Carried Dependence

for(i=1; i<100; i++)
for(j=1; j<100; j++)
afilfil = f(afijf-1j);

e Loop-independent dependence on i.
e Loop-carried dependence on|.
e Outer loop can be parallelized, inner loop cannot.

Data Dependence in Loops
(cont.)

e Loop-Carried Dependence

for(j=1; j<100; j++)
for(i=1; i<100; j++)
afiffij = f(afijj-11);

e Innerloop can be parallelized, outer loop cannot.
e Less desirable situation (finer-grain parallelism).
e Loop interchange is sometimes possible.

(True) Data (or Flow) Dependence
Assume task 52 follows task S1 in sequential program order
Task S1 produces one or more results used by task S2,

— Then task S2 is said to be data dependent on task S1

Changing the relative execution order of tasks S1, 52 in the parallel program
violates this data dependence and results in incorrect execution.

Dependency Graph Representation

S71 (Write)|_

—
—
S

i.e. Producer

Ta
Shared Q

Operands
-

$2 (Read) |«

i.e. Consumer

Data Dependence
Order

S1

Task S2 is data dependent on task S1

