
ITMC403 Parallel and Distributed

Computing

Dependence analysis

Fundamental Assumption
 When can two statements execute in parallel?

 On one processor:

 statement 1;

 statement 2;

 On two processors:

 processor 1: processor 2:

 statement 1; statement 2;

 Processors execute independently: no control over order of execution

between processors

Fundamental Assumption (Cont.)
 When can two statements execute in parallel?

 On two processors:

 Possibility 1

 processor 1: processor 2:

statement 1; ---------------

--------------- statement 2;

 Possibility 2

 processor 1: processor 2:

--------------- statement 1;

statement 2; ---------------

Their order of execution must not matter! In other words,

 statement1; statement2;

 must be equivalent to

 statement2; statement1;

Examples
 EXAMPLE 1

 a = 1;  Statements can be executed in parallel.

 b = 2;

 EXAMPLE 2

 a = 1;  Statements cannot be executed in parallel

 b = a;  Program modifications may make it possible.

 EXAMPLE 3

 a = f(x);  May not be wise to change the program

 b = a;  (sequential execution would take longer).

 EXAMPLE 4

 b = a;  Statements cannot be executed in parallel.

 a = 1;

 EXAMPLE 5

 a = 1  Statements cannot be executed in parallel.

 a = 2

Types of Dependences
True (flow) dependence –RAW read after write

 Statements S1, S2

 S2 has a true dependence on S1

 iff

 S2 reads a value written by S1

 Denoted by S1 d S2

Example:

 The first statement writes into a location that is read by the second.

 S1 X = ...

 S2 ... = X

 We write S1 d S2.

Types of Dependences (cont.)
Anti-dependence –WAR write after read

 Statements S1, S2

 S2 has a anti-dependence on S1

 iff

 S2 writes a value read by S1

 Denoted by S1 d -1 S2

 Example:

 The first statement reads from a location into which the second

 statement writes.

 S1 ... = X

 S2 X = ...

 An anti-dependence is denote by S1 d -1 S2

Types of Dependences (cont.)
Output dependence –WAW write after write

 Statements S1, S2

 S2 has a output dependence on S1

 iff

 S2 writes a value written by S1

 Denoted by S1 d 0 S2

 Example:

 both statements write into the same location.

 S1 X = ...

 S2 X = ...

 We write S1 d 0 S2

When can 2 statements execute in parallel?

S1 and S2 can execute in parallel

iff

there are no dependences between S1 and S2

 – true dependences

 – anti-dependences

 – output dependences

Some dependences can be removed.

Data Dependence in Loops

Parallelism often occurs in loops.

 for(i=0; i<100; i++)

 a[i] = i;

 No dependences.

 Iterations can be executed in parallel.

Data Dependence in Loops

(cont.)

Parallelism often occurs in loops.

 for(i=0; i<100; i++) {

 a[i] = i;

 b[i] = 2*i;

 }

Iterations and statements can be executed in parallel.

Data Dependence in Loops

(cont.)

Parallelism often occurs in loops.

 for(i=1; i<100; i++)

 a[i] = f(a[i-1]);

 Dependence between a[i] and a[i-1].

 Loop iterations are not parallelizable.

Data Dependence in Loops

(cont.)

Parallelism often occurs in loops.

 for(i=1; i<100; i++)

 a[i] = f(a[i-1]);

 Dependence between a[i] and a[i-1].

 Loop iterations are not parallelizable.

Data Dependence in Loops

(cont.)
 Loop-Carried Dependence

 A loop-carried dependence is a dependence that is present only

if the statements occur in two different instances of a loop

 Otherwise, we call it a loop-independent dependence

 Loop-carried dependences limit loop iteration parallelization

Data Dependence in Loops

(cont.)
 Loop-Carried Dependence

 for(i=1; i<100; i++)

 for(j=1; j<100; j++)

 a[i][j] = f(a[i][j-1]);

 Loop-independent dependence on i.

 Loop-carried dependence on j.

 Outer loop can be parallelized, inner loop cannot.

Data Dependence in Loops

(cont.)
 Loop-Carried Dependence

 for(j=1; j<100; j++)

 for(i=1; i<100; i++)

 a[i][j] = f(a[i][j-1]);

 Inner loop can be parallelized, outer loop cannot.

 Less desirable situation (finer-grain parallelism).

 Loop interchange is sometimes possible.

