
ITMC403 Parallel and Distributed

Computing

Interconnected Multiprocessor

architectures'

 -Types

 - Vector Parallelism

 Tightly coupled Interconnected

Multiprocessor architectures

 In these architectures, there is a single system wide primary memory

(address space) that is shared by multiprocessors, as shown in the

figure.

 For example, If any processor writes, the value 100 to the memory

location x, any other processor subsequently reading from location x will

get the value 100. Therefore, in these architectures, any communication

between the processors usually takes place through the shared

memory.

Loosely coupled Interconnected

Multiprocessor architectures

 In these architectures, the processors do not share memory, and

each processor has its own local memory, As shown in the figure.

 For example: If a processor writes the value 100 to the memory

location x, this write operation will only change the contents of its local

memory and will not affect the contents of the memory. In these

architectures, all physical communication between the processors is

done by passing messages across the network that interconnects the

processors.

In Class Discussions on both

types
 Tightly coupled architecture are referred to as parallel processing

systems, and

 loosely coupled architecture are referred to as distributed

computing systems, or simply distributed systems.

 In contrast to the Tightly coupled architecture , the processor of

distributed computing systems can be located far from each other to

cover a wider geographical area.

 In Tightly coupled architecture, the number of processors that can be

usefully deployed is usually small and limited by the bandwidth of the

shared memory. This is not the case with distributed computing

systems that are more freely expandable and can have an almost

unlimited number of processors.

In Class Discussions on both

types
 In short, loosely coupled architecture

 is basically a collection of processors interconnected by a

communication network in which each processor has its own local

memory and other peripherals, and the communication between any

two processors of the system takes place by message passing over

the communication network.

 For a particular processor, its own resources are local,

whereas the other processors and their resources are

remote. Together, a processor and its resources are usually

referred to as a node or site or machine of the distributed

computing system.

Vector Parallelism on Multi

Processors (SIMD)
 How It Works, Conceptually

 Goal: parallelize computations on vector arrays

– Line up operands, execute one op on all simultaneously

Three Ways to Look at Vectorization

 Hardware Perspective: Run vector instructions involving special

registers and functional units that allow in-core parallelism for

operations on arrays (vectors) of data.

 Compiler Perspective: Determine how and when it is possible to

express computations in terms of vector instructions.

 User Perspective: Determine how to write code with SIMD in mind;

e.g., in a way that allows the compiler to deduce that vectorization is

possible.

 How Do You Get Vector Speedup?

 – Relatively “easy” for user, “challenging” for compiler.
 – Compiler may need some guidance through directives.

 – Programmer can help by using simple loops and arrays.

Hardware Perspective:
 This involves lining up two vectors (R1 and R2), and multiplying their

individual elements together to produce vector (VR3).

 Example:

 1 load

 1 multiply

 1 save

Compiler Perspective
 Think of vectorization in terms of loop unrolling

– Unroll by 4 iterations, if 4 elements fit into a vector register

 for (i=0; i<N; i++) {

 c[i]=a[i]+b[i];

 }

 for (i=0; i<N; i+=4) {

 c[i+0]=a[i+0]+b[i+0];

 c[i+1]=a[i+1]+b[i+1];

 c[i+2]=a[i+2]+b[i+2];

 c[i+3]=a[i+3]+b[i+3];

 }

Loops That the Compiler Can

Vectorize
 Basic requirements of vectorizable loops:

 Number of iterations is known on entry

– No conditional termination (“break” statements, while-loops)

 Single control flow; no “if” or “switch” statements

– Note, the compiler may convert “if” to a masked assignment!

 Must be the innermost loop, if nested

– Note, the compiler may reorder loops as an optimization!

 No function calls but basic math: pow(), sqrt(), sin(), etc.

– Note, the compiler may inline functions as an optimization!

 All loop iterations must be independent of each other

User Perspective
 User’s goal is to supply code that runs well on hardware

 Thus, you need to know the hardware perspective

– Think about how instructions will run on vector hardware

– Try also to combine additions with multiplications

– Furthermore, try to reuse everything you bring into cache!

 And you need to know the compiler perspective

– Look at the code like the compiler looks at it

– At a minimum, set the right compiler options!

Vector-Aware Coding
 Know what makes codes vectorizable at all

– The “for” loops (C) or “do” loops (Fortran) that meet constraints

 Know where vectorization ought to occur

 Arrange vector-friendly data access patterns (unit stride)

 Study compiler reports: do loops vectorize as expected?

 Evaluate execution performance: is it near the roofline?

 Implement fixes: directives, compiler flags, code changes

– Remove constructs that hinder vectorization

– Encourage/force vectorization when compiler fails to do it

– Engineer better memory access patterns

Challenge: Loop Dependencies
 Vectorization changes the order of computation compared to sequential

case

 – Groups of computations now happen simultaneously

 Compiler must be able to prove that vectorization will produce correct

results

 Key criterion: “unrolled” loop iterations must be independent of each
other

– Wider vectors means that more iterations must be independent

– Note, not all kinds of dependencies are detrimental

 Compiler performs dependency analysis and vectorizes accordingly

 – It will make conservative assumptions about dependencies,

 unless guided by directives

Loop Dependencies: Read

After Write
 Consider adding the following vectors in a loop, N=5:

 a = {0,1,2,3,4} for(i=1; i<N; i++)

 b = {5,6,7,8,9} a[i] = a[i-1] + b[i];

 Applying each operation sequentially:

 a[1] = a[0] + b[1] → a[1] = 0 + 6 → a[1] = 6

 a[2] = a[1] + b[2] → a[2] = 6 + 7 → a[2] = 13

 a[3] = a[2] + b[3] → a[3] = 13 + 8 → a[3] = 21

 a[4] = a[3] + b[4] → a[4] = 21 + 9 → a[4] = 30

 a = {0, 6, 13, 21, 30}

Loop Dependencies: Read

After Write
 Consider adding the following vectors in a loop, N=5:

 a = {0,1,2,3,4} for(i=1; i<N; i++)

 b = {5,6,7,8,9} a[i] = a[i-1] + b[i];

 Applying each operation sequentially:

 a[1] = a[0] + b[1] → a[1] = 0 + 6 → a[1] = 6

 a[2] = a[1] + b[2] → a[2] = 6 + 7 → a[2] = 13

 a[3] = a[2] + b[3] → a[3] = 13 + 8 → a[3] = 21

 a[4] = a[3] + b[4] → a[4] = 21 + 9 → a[4] = 30

 a = {0, 6, 13, 21, 30}

Loop Dependencies: Read

After Write
 Consider adding the following vectors in a loop, N=5:

 a = {0,1,2,3,4} for(i=1; i<N; i++)

 b = {5,6,7,8,9} a[i] = a[i-1] + b[i];

 Applying vector operations, i={1,2,3,4}:

 a[i-1] = {0,1,2,3} (load)

 b[i] = {6,7,8,9} (load)

 {0,1,2,3} + {6,7,8,9} = {6, 8, 10, 12} (operate)

 a[i] = {6, 8, 10, 12} (store)

 a = {0, 6, 8, 10, 12} ≠ {0, 6, 13, 21, 30} NOT VECTORIZABLE

Loop Dependencies: Synopsis
 Read After Write

– Also called “flow” dependency for(i=0; i<N; i++)

– Variable written first, then read a[i] = a[i-1] + b[i];

– Not vectorizable

 Write After Read

– Also called “anti” dependency for(i=0; i<N; i++)

– Variable read first, then written a[i] = a[i+1] + b[i];

– Vectorizable

Loop Dependencies: Synopsis
 Read After Read

– Not really a dependency for(i=0; i<N; i++)

– Vectorizable a[i] = b[i%2] + c[i];

 Write After Write

– a.k.a “output” dependency for(i=0; i<N; i++)

– Variable written, then re-written a[i%2] = b[i] + c[i];

– Not vectorizable

– Exception: array sums and products (+=, *=) are vectorizable

Loop Dependencies: Aliasing
 In C, pointers can hide data dependencies!

 – The memory regions that they point to may overlap

 Is this vectorizable?

 void compute(double *a, double *b, double *c) {

 for (i=1; i<N; i++) {

 a[i] = b[i] + c[i];

 }

 }

 – ...Not if we give it the arguments compute(a,a-1,c)

 – In effect, b[i] is really a[i-1] → Read After Write dependency

 Compilers can usually cope, at some cost to performance

