
ITMC403 Parallel and Distributed

Computing

Thread pools

What is Thread Pools?
 The idea behind a thread pool is to set up a number of threads that

sit idle, waiting for work that they can perform.

 As your program has tasks to execute, it encapsulates those tasks

into some object (typically a Runnable object) and informs the

thread pool that there is a new task.

 One of the idle threads in the pool takes the task and executes it;

when it finishes the task, it goes back and waits for another task.

 Thread pools have a maximum number of threads available to run

these tasks. Consequently, when you add a task to a thread pool, it

might have to wait for an available thread to run it. That may not

sound encouraging, but it’s at the core of why you would use a
thread pool.

Reasons for using thread pools fall

into three categories.

 The first reason: because the overhead of creating a thread is very high;

by using a pool, we can gain some performance when the threads are

reused. The degree to which this is true depends a lot on the program and

its requirements. It is true that creating a thread can take as much as a few

hundred microseconds, which is a significant amount of time for some

programs.

 The second reason: it allows for better program design. If a program

 has a lot of tasks to execute, you simply create a task and send the task to

the pool to be executed; this leads to much more elegant programs and lets

you focus on the logic of your program

 The third reason: to use a thread pool is that they carry important

performance benefits for applications that want to run many threads

simultaneously. In fact, anytime you have more active threads than CPUs,

a thread pool can play a crucial role in making your program seem to run

faster and more efficiently.

Thread Pools and Throughput
 what does it mean that your program “seems” to run faster?
It means that the throughput of your CPU-bound program running multiple

calculations will be faster, and that leads to the perception that your

program is running faster. It’s all a matter of throughput.

What is Throughput?

Answer:

Thread Pools and Throughput

(Cont.)
Remember, our first example, we have three threads and one CPU. The

three threads run at the same time, are time-sliced by the OS, and all

completed execution in around 8 seconds. produces this output:

Starting task Task 2 at 00:04:30:324

Starting task Task 0 at 00:04:30:334

Starting task Task 1 at 00:04:30:345

Ending task Task 1 at 00:04:38:052 after 7707 milliseconds

Ending task Task 2 at 00:04:38:380 after 8056 milliseconds

Ending task Task 0 at 00:04:38:502 after 8168 milliseconds

In this case,

assume that we have written this program as a server where each time

a client connects, it is given a separate thread.

When the three clients each request the service (that is, the calculation of the

Fibonacci number), each will wait 8 seconds for its answer.

Thread Pools and Throughput

(Cont.)
Remember, our second example, we have three threads and we run the

threads sequentially, all completed execution in around 8 seconds and see

this output:

Starting task Task 0 at 00:04:30:324

Ending task Task 0 at 00:04:33:052 after 2728 milliseconds

Starting task Task 1 at 00:04:33:062

Ending task Task 1 at 00:04:35:919 after 2857 milliseconds 118

Starting task Task 2 at 00:04:35:929

Ending task Task 2 at 00:04:38:720 after 2791 milliseconds

In this case,

A server that runs the calculations sequentially will provide its first answer in

2.7 seconds, and the average waiting time for the clients will be 5.4 seconds.

This is what we mean by the throughput of the program. In both cases, we’ve

done the same amount of work, but in the second case, users of the program

are generally happier with the performance.

Thread Pools and Throughput
(Cont.) Class Discussions

Discussions on our second examples,

we have three threads and we have written this program as a server where

each time a client connects, it is given a separate new thread.

Now consider these options:

 What happens If we create a new thread for every client?

 Answer: the server could quickly become overloaded

 the server could quickly become overloaded: the more threads it

 starts, the slower it provides an answer for each request.

 What happens if we run the requests sequentially using only one

thread? Answer: The server reaches a steady state.

 Consumer/Producer model

With three requests in the queue, each subsequent request arrives as another

one finishes. We can supply an endless number of answers to the clients;

each client waits about eight seconds for a response.

A Traditional I/O Server
 In this (blocking) I/O model, a network server must start a new thread

for every client that attaches to the server. We solve the problem of

blocking while we’re waiting for data.
 Once a data connection has been negotiated, the server and client

communicate through the private connection. This simplifies our

server-side programming.

