
ITMC403 Parallel and Distributed

Computing

Scheduling Threading
Implementations

Priority-based and Preemptive Scheduling

The main thread is the currently running thread until it blocks at time T1.

 At that point, one of the task threads becomes the currently running thread;

 it remains the currently running thread until time T2 when it finishes and

transitions to the exiting state. Another task thread becomes the currently

running thread, and the cycle continues until all threads have completed.

So why is the output different the first time we run the example?

•When we run the program

 for a second time:

•A simple thread-state diagram
(proceeds sequentially)

Time-slicing Scheduling

The thread scheduler on that OS, in addition to being priority-based and

 preemptive, is also time-slicing.

That means when threads are waiting for the CPU, the operating system

 allows one of them to run for a very short time. It then interrupts that thread

 and allows a second thread to run for a very short time, and so on.

•Thread states with OS

 scheduling

Priority Exceptions

 When an operating system schedules Java threads, it may choose

to run a lower-priority thread instead of a higher-priority thread in two

instances.

1- Priority inversion

In a typical priority-based threading system, something unusual

occurs when a thread attempts to acquire a lock that is held by a

lower-priority thread: because the higher-priority thread becomes

blocked, it temporarily runs with an effective priority of the lower-

priority thread.

Priority Exceptions (Cont.)
Example of Priority inversion

A thread with a priority of 8 that wants to acquire a lock that is held by a

thread with a priority of 2. Because the priority 8 thread is waiting for

the priority 2 thread to release the lock, it ends up running with an

Effective priority of 2. This is known as priority inversion.

Solution: using priority inheritance

With priority inheritance, a thread that holds a lock that is wanted by a

 thread with a higher priority has its priority temporarily and silently

raised: its new priority becomes the same as the priority of the thread

that it is causing to block. When the thread releases the lock, its priority

is lowered to its original value.

Note: The goal of priority inheritance is to allow the high-priority thread to

run as soon as possible.

(Priority Exceptions (Cont.
2- Complex priorities

 It is a new priority as a result of combining of Java’s and OS’s
priorities.

 Java has11 priority levels (10 of which are available to developers).

 The second case involves the priority assigned to threads by OS.

 OS usually have many more priorities. More important, though, is

that the priority that the OS assigns to a thread is a complex formula

that takes many pieces of information into account.

 A simple version of this formula might be this:

RealPriority = JavaPriority + SecondsWaitingForCPU

Notes: Complex priorities are advantageous because they help to prevent

thread starvation.

Scheduling Threading
Implementations

 Green Threads method
 Refers to a model in which the JVM creates, schedules and

manages Java threads without the OS threads library. Green thread

model used in Java 1.1 as it is faster to process.

 Supports the fact that the code is emulating many different threads

is unknown outside of the virtual machine.

 The threads in this method are often called user-level threads

because they exist only within the user level of the application: no

calls into the OS are required to handle any thread details.

 It is platform independent.

The green thread model is completely

deterministic with respect to scheduling.
 Starting task Task 5 at 07:23:12:074

Ending task Task 5 at 07:23:12:995 after 921 milliseconds

Starting task Task 4 at 07:23:13:111

Starting task Task 6 at 07:23:13:281

Ending task Task 6 at 07:23:14:256 after 975 milliseconds

Starting task Task 7 at 07:23:14:386

Ending task Task 7 at 07:23:15:398 after 1012 milliseconds

Starting task Task 8 at 07:23:15:504

Ending task Task 8 at 07:23:16:567 after 963 milliseconds

Starting task Task 9 at 07:23:16:624

Ending task Task 9 at 07:23:17:699 after 1075 milliseconds

Ending task Task 4 at 07:23:18:912 after 5801 milliseconds

Starting task Task 3 at 07:23:19:114

Ending task Task 3 at 07:23:20:177 after 1063 milliseconds

Starting task Task 2 at 07:23:20:301

Ending task Task 2 at 07:23:21:305 after 1004 milliseconds

Starting task Task 1 at 07:23:21:486

Ending task Task 1 at 07:23:22:449 after 963 milliseconds

Running our

priority calculation

above, we see this

output:

Scheduling Threading
Implementations (Cont.)

 Native Threads method
 Refers to a model in which the JVM creates, schedules and

manages Java threads using OS threads library. Current java API

uses Native threads model due to Green threads.

 There is one to one mapping between Java threads and OS

threads.

 The OS scheduler makes no real distinction in this case between a

process and a thread: it treats each thread like a process. Of

course, there are still other differences in the OS between a thread

and a process, but not as far as the scheduler is concerned.

 The threads in this method are often called System-level threads.

Scheduling Threading

Implementations
Mapping of Java thread priorities on Win32

platforms

Java priority Win32 priority
 0 THREAD_PRIORITY_IDLE

 1 (Thread.MIN_PRIORITY) THREAD_PRIORITY_LOWEST

 2 THREAD_PRIORITY_LOWEST

 3 THREAD_PRIORITY_BELOW_NORMAL

 4 THREAD_PRIORITY_BELOW_NORMAL

 5 (Thread.NORM_PRIORITY) THREAD_PRIORITY_NORMAL

 6 THREAD_PRIORITY_ABOVE_NORMAL

 7 THREAD_PRIORITY_ABOVE_NORMAL

 8 THREAD_PRIORITY_HIGHEST

 9 THREAD_PRIORITY_HIGHEST

 10 (Thread.MAX_PRIORITY) THREAD_PRIORITY_TIME_CRITICAL

USER- AND SYSTEM-LEVEL
THREADS (OS review)

In most OSs, the OS is logically divided into two pieces:

 user level and system level.

The OS itself — that is, the OS kernel — lies at the system level. The kernel is

responsible for handling system calls on behalf of programs run at the user

level. When a program running at user level wants to read a file; for example, it

must call (or trap) into the OS kernel, which reads the file and returns the data

to the program. This separation has many advantages, not the least of which is

that it allows for a more robust system: if a program performs an illegal

operation, it can be terminated without affecting other programs or the kernel

itself. Only when the kernel executes an illegal operation does the entire

machine crash. Because of this separation, it is possible to have support for

threads at the user level, the system level, or at both levels independently.

Scheduling Threading
Implementations (Cont.)

 Native Threads complex priority calculation
 Threads are subject to priority inheritance.

 The actual priority of a thread is based on its programmed (or inverted)

priority minus a value that indicates how recently the thread has actually run.

This value is subject to continual adjustment: the more time passes, the

closer to zero that value becomes. This primarily distinguishes between

threads of the same priority, and it leads to round-robin scheduling of

threads of the same priority.

 On another level, a thread that has not run for a very long time is given a

temporary priority boost. The value of this boost decays over time as the

thread has a chance to run. This prevents threads from absolute starvation

while still giving preference to higher-priority threads over lower-priority

threads. The effect of this priority boost depends on the original priority of

the thread. Threads running in a program that has keyboard and mouse

focus are given a priority boost over threads in other programs.

What is round-robin

scheduling?
 Answer:
It is a CPU scheduling algorithm where each process is assigned a

fixed time slot in a cyclic way. It is basically the preemptive scheduling

 of First come First Serve CPU Scheduling algorithm.

