
ITMC403 Parallel and Distributed

Computing

Threads Scheduling

Intro.
 The term “thread scheduling” covers a variety of topics.

 One of those topics, which is

 how a computer selects particular threads to run.

 The key to understanding thread scheduling is to realize that a

CPU is a scarce resource.

 When two or more threads want to run on a single-processor

machine, they end up competing for the CPU, and it’s up to
someone — either the programmer, the Java virtual machine, or the

operating system — to make sure that the CPU is shared among

these threads.

 The same is true whenever a program has more threads than the

machine hosting the program has CPUs.

 package javathreads.examples.itmc403;

import java.util.*;

import java.text.*;

 public class Task implements Runnable {

 long n;

 String id;

 private long fib(long n) {

 if (n == 0)

 return 0L;

 if (n == 1)

 return 1L;

 return fib(n - 1) + fib(n - 2);

 }

 public Task(long n, String id) {

 this.n = n;

 this.id = id;

 }

 public void run() {

 Date d = new Date();

 DateFormat df = new SimpleDateFormat("HH:mm:ss:SSS");

 long startTime = System.currentTimeMillis();

 d.setTime(startTime);

 System.out.println("Starting task " + id + " at " + df.format(d));

 fib(n);

 long endTime = System.currentTimeMillis();

 d.setTime(endTime);

 System.out.println("Ending task " + id + " at " + df.format(d) +

 " after " + (endTime - startTime) + " milliseconds");

 }

}

 package javathreads.examples.itmc403.example1;

import javathreads.examples.itmc403.*;

 public class ThreadTest {

 public static void main(String[] args) {

 int nThreads = Integer.parseInt(args[0]);

 long n = Long.parseLong(args[1]);

 Thread t[] = new Thread[nThreads];

 for (int i = 0; i < t.length; i++) {

 t[i] = new Thread(new Task(n, "Task " + i));

 t[i].start();

 }

 for (int i = 0; i < t.length; i++) {

 try {

 t[i].join();

 } catch (InterruptedException ie) {}

 }

 }

}

Running this code with 3 threads produces this

kind of output:

 Starting task Task 2 at 00:04:30:324

Starting task Task 0 at 00:04:30:334

Starting task Task 1 at 00:04:30:345

Ending task Task 1 at 00:04:38:052 after 7707 milliseconds

Ending task Task 2 at 00:04:38:380 after 8056 milliseconds

Ending task Task 0 at 00:04:38:502 after 8168 milliseconds

Comments (notice that):

 Last thread we created and started (Task 2) was the first one that

printed its first output.

 All threads started within 20 milliseconds of each other.

 The actual calculation took about 8 seconds for each thread.

 The threads ended in a different order than they started in.

 Task 2 started first, it took 349 milliseconds longer to perform the same

calculation as Task 1 and finished after Task 1.

Certain virtual machines and operating systems,

however, would produce this output:

 Starting task Task 0 at 00:04:30:324

Ending task Task 0 at 00:04:33:052 after 2728 milliseconds

Starting task Task 1 at 00:04:33:062

Ending task Task 1 at 00:04:35:919 after 2857 milliseconds

Starting task Task 2 at 00:04:35:929

Ending task Task 2 at 00:04:37:720 after 2791 milliseconds

Comments (notice that):

 The total here takes about the same amount of time, but now they

have run sequentially:

 The Task 2 did not begin to execute until the first Task 1 was

finished.

 Another interesting fact about this output is that each individual

task took less time than it did previously.

