
ITMC403 Parallel and Distributed

Computing

Threads Scheduling

Intro.
 The term “thread scheduling” covers a variety of topics.

 One of those topics, which is

 how a computer selects particular threads to run.

 The key to understanding thread scheduling is to realize that a

CPU is a scarce resource.

 When two or more threads want to run on a single-processor

machine, they end up competing for the CPU, and it’s up to
someone — either the programmer, the Java virtual machine, or the

operating system — to make sure that the CPU is shared among

these threads.

 The same is true whenever a program has more threads than the

machine hosting the program has CPUs.

 package javathreads.examples.itmc403;

import java.util.*;

import java.text.*;

 public class Task implements Runnable {

 long n;

 String id;

 private long fib(long n) {

 if (n == 0)

 return 0L;

 if (n == 1)

 return 1L;

 return fib(n - 1) + fib(n - 2);

 }

 public Task(long n, String id) {

 this.n = n;

 this.id = id;

 }

 public void run() {

 Date d = new Date();

 DateFormat df = new SimpleDateFormat("HH:mm:ss:SSS");

 long startTime = System.currentTimeMillis();

 d.setTime(startTime);

 System.out.println("Starting task " + id + " at " + df.format(d));

 fib(n);

 long endTime = System.currentTimeMillis();

 d.setTime(endTime);

 System.out.println("Ending task " + id + " at " + df.format(d) +

 " after " + (endTime - startTime) + " milliseconds");

 }

}

 package javathreads.examples.itmc403.example1;

import javathreads.examples.itmc403.*;

 public class ThreadTest {

 public static void main(String[] args) {

 int nThreads = Integer.parseInt(args[0]);

 long n = Long.parseLong(args[1]);

 Thread t[] = new Thread[nThreads];

 for (int i = 0; i < t.length; i++) {

 t[i] = new Thread(new Task(n, "Task " + i));

 t[i].start();

 }

 for (int i = 0; i < t.length; i++) {

 try {

 t[i].join();

 } catch (InterruptedException ie) {}

 }

 }

}

Running this code with 3 threads produces this

kind of output:

 Starting task Task 2 at 00:04:30:324

Starting task Task 0 at 00:04:30:334

Starting task Task 1 at 00:04:30:345

Ending task Task 1 at 00:04:38:052 after 7707 milliseconds

Ending task Task 2 at 00:04:38:380 after 8056 milliseconds

Ending task Task 0 at 00:04:38:502 after 8168 milliseconds

Comments (notice that):

 Last thread we created and started (Task 2) was the first one that

printed its first output.

 All threads started within 20 milliseconds of each other.

 The actual calculation took about 8 seconds for each thread.

 The threads ended in a different order than they started in.

 Task 2 started first, it took 349 milliseconds longer to perform the same

calculation as Task 1 and finished after Task 1.

Certain virtual machines and operating systems,

however, would produce this output:

 Starting task Task 0 at 00:04:30:324

Ending task Task 0 at 00:04:33:052 after 2728 milliseconds

Starting task Task 1 at 00:04:33:062

Ending task Task 1 at 00:04:35:919 after 2857 milliseconds

Starting task Task 2 at 00:04:35:929

Ending task Task 2 at 00:04:37:720 after 2791 milliseconds

Comments (notice that):

 The total here takes about the same amount of time, but now they

have run sequentially:

 The Task 2 did not begin to execute until the first Task 1 was

finished.

 Another interesting fact about this output is that each individual

task took less time than it did previously.

