
ITMC403 Parallel and Distributed

Computing

Tasks and Threads

Tasks and Threads
• A task is an abstraction of a series of steps

– Might be done in a separate thread

– Java libraries use the Runnable interface

– work done by method run()

• Thread: a Java class for a thread

– work done by method run()

• How to associate a task with a thread?

• How to start a thread?

New Steps to start a threads
To use the Runnable interface to create and start a thread, you have

to do the following:

1) Create a class that implements Runnable.

2) Provide a run method in the Runnable class.

3) Create an instance of the Thread class and pass your Runnable

object to its constructor as a parameter.

 A Thread object is created that can run your Runnable class.

1) Call the Thread object’s start method.

 The run method of your Runnable object is called and executes in

a separate thread.

Steps 1 & 2 are easy. Steps 3 & 4 you can complete them in several ways.

Examples: your Runnable class is named RunnableClass:

 RunnableClass rc = new RunnableClass();

 Thread t = new Thread(rc);

 t.start();

to be as concise as possible, so you often see this code compressed to

something more like

 Thread t = new Thread(new RunnableClass());

 t.start();

or even just this:

 new Thread(new RunnableClass()).start();

This single-line version works — provided that you don’t need to access
the thread object later in the program.

Concurrent Thread Execution
 Two threads run concurrently (are concurrent) if their logical flows

overlap in time

 Otherwise, they are sequential (just like processes)

 Examples:

 Concurrent: A & B, A&C

 True parallelism

 Sequential: B & C

 Pseudo Parallelism

Time

Thread A Thread B Thread C

6

Threads in Java
 There are two ways to create a java thread:

 By extending the java.lang.Thread class.

 By implementing the java.lang.Runnable interface.

 The run() method is where the action of a thread takes place.

 The execution of a thread starts by calling its start() method.

class PrimeThread extends Thread {

 long minPrime;

 PrimeThread(long minPrime) {

 this.minPrime = minPrime; }

 public void run() {

// compute primes larger than minPrime . . .

 }

}

 The following code would then create a thread and start it running:

PrimeThread p = new PrimeThread(143);

p.start();

Implementing the Runnable Interface
 In order to create a new thread we may also provide a class that

implements the java.lang.Runnable interface.

 Preferred way in case our class has to subclass some other class.

 A Runnable object can be wrapped up into a Thread object:

 Thread(Runnable target)

 Thread(Runnable target, String name)

 The thread’s logic is included inside the run() method of the runnable

object.

class ExClass

 extends ExSupClass

 implements Runnable {

…

public ExClass (String name) {

}

public void run() {

 …

}

}

class A {

…

main(String[] args) {

…

Thread mt1 = new Thread(new ExClass("thread1”));
Thread mt2 = new Thread(new ExClass("thread2”));
mt1.start();

mt2.start();

}

}

Implementing the Runnable Interface

 Constructs a new thread object associated with the given Runnable

object.

 The new Thread object's start() method is called to begin execution of

the new thread of control.

 The reason we need to pass the runnable object to the thread object's

constructor is that the thread must have some way to get to the run()

method we want the thread to execute. Since we are no longer

overriding the run() method of the Thread class, the default run()

method of the Thread class is executed:

public void run() {

 if (target != null) {

 target.run();

 }

}

 Here, target is the runnable object we passed to the thread's

constructor. So the thread begins execution with the run() method of

the Thread class, which immediately calls the run() method of our

runnable object.

Sleep, Yield, Notify & Wait Thread’s
Functions

 sleep(long millis) - causes the currently executing thread to

sleep (temporarily cease execution) for the specified number of

milliseconds.

 yield() - causes the currently executing thread object to

temporarily pause and allow other threads to execute.

 wait() - causes current thread to wait for a condition to occur

(another thread invokes the notify() method or the notifyAll()

method for this object). This is a method of the Object class

and must be called from within a synchronized method or

block.

 notify() - notifies a thread that is waiting for a condition that the

condition has occurred. This is a method of the Object class

and must be called from within a synchronized method or

block.

 notifyAll() – like the notify() method, but notifies all the threads

that are waiting for a condition that the condition has occurred.

The Lifecycle of a Thread
 The start() method creates the system resources necessary to run the

thread, schedules the thread to run, and calls the thread's run()

method.

 A thread becomes Not Runnable when one of these events occurs:

 Its sleep() method is invoked.

 The thread calls the wait() method.

 The thread is blocked on I/O operations.

 A thread dies naturally when the run() method exits.

Thread Priority
 On a single CPU, threads actually run one at a time in such

a way as to provide an illusion of concurrency.

 Execution of multiple threads on a single CPU, in some

order, is called scheduling.

 The Java runtime supports a very simple scheduling

algorithm (fixed priority scheduling). This algorithm

schedules threads based on their priority relative to other

runnable threads.

 The runtime system chooses the runnable thread with the

highest priority for execution.

Thread Priority

 If two threads of the same priority are waiting for the CPU, the

scheduler chooses one of them to run in a round-robin fashion - each

process is guaranteed to get its turn at the CPU at every system-

specified time interval.

 The chosen thread will run until:

 A higher priority thread becomes runnable.

 It yields (calls its yield() method), or its run() method exits.

 On systems that support time-slicing, its time allotment has

elapsed.

 You can modify a thread's priority at any time after its creation by using

the setPriority() method.

Synchronization of Java Threads
 In many cases concurrently running threads share data and must

consider the state and activities of other threads.

 If two threads can both execute a method that modifies the state of an

object then the method should be declared to be synchronized, those

allowing only one thread to execute the method at a time.

 If a class has at least one synchronized method, each instance of it

has a monitor. A monitor is an object that can block threads and

notify them when the method is available.

Example:

public synchronized void updateRecord() {

//**** critical code goes here …

}

 Only one thread may be inside the body of this function. A second call

will be blocked until the first call returns or wait() is called inside the

synchronized method.

Synchronization of Java Threads
 If you don’t need to protect an entire method, you can

synchronize on an object:
public void foo() {

synchronized (this) {

//critical code goes here …

}

…

}

 There are two syntactic forms based on the

synchronized keyword - blocks and methods.

 Block synchronization takes an argument of which object

to lock. This allows any method to lock any object.

 The most common argument to synchronized blocks is this.

 Block synchronization is considered more fundamental than

method synchronization.

Applying Synchronization (Example)
Consider the following class:

class Even {

 private int n = 0;

 public int next(){

 ++n;

 ++n;

 return n; //**** next is always even

}

}

Without synchronizing, the desired postcondition may fail due to a storage conflict

when two or more threads execute the next method of the same Even object.

Here is one possible execution trace:

Declaring the next method as

synchronized would resolve such

conflicting problems.

synchronized

