
Mobile Application

Develpment
Background Tasks in Android

Service

Background Tasks in Android

 Background Tasks in Android

 Service Life Cycle

 Unbound Service

 Bound Service

 Intent & Intent Filter

 Broadcast Receiver

A service can essentially take

two forms:
 Started: A service is "started"

 when an application component (such as an activity) starts it by

calling startService().

 Once started, a service can run in the background indefinitely,

even if the component that started it is destroyed.

 Usually, a started service performs a single operation and does not

return a result to the caller.

 For example,

 it might playing music. When the operation is done, the service

should stop itself.

A service can essentially take

two forms: (Cont.)
 Bound: A service is "bound"

 when an application component binds to it by calling bindService().

 A bound service offers a client-server interface that allows

components to interact with the service, send requests, get

results, and even do so across processes with interprocess

communication (IPC).

 A bound service runs only as long as another application

component is bound to it.

 Multiple components can bind to the service at once, but when all of

them unbind, the service is destroyed.

Service - Life Cycle
a service has lifecycle callback methods

that you can implement to monitor changes

in the service's state and perform work

at the appropriate times.

 The entire lifetime of a service:

happens between the time onCreate()

is called and the time OnDestroy() returns.

 The active lifetime of a service

begins with a call to either

onStartCommand() or onBind() ends

the same time that the entire lifetime

Ends. If the service is bound, the active

 lifetime ends when onUnbind() returns.

Life Cycle methods are:

 onStartCommand() The system calls this method when another

component, such as an activity, requests that the service be started, by

calling startService(). If you implement this method, it is your

responsibility to stop the service when its work is done, by calling

stopSelf() or stopService() methods.

 onBind() The system calls this method when another component wants

to bind with the service by calling bindService(). If you implement this

method, you must provide an interface that clients use to communicate

with the service, by returning an IBinder object. You must always

implement this method, but if you don't want to allow binding, then you

should return null.

Life Cycle methods (Cont.)
 onUnbind() The system calls this method when all clients have

disconnected from a particular interface published by the service.

 onRebind() The system calls this method when new clients have

connected to the service, after it had previously been notified that all

had disconnected in its onUnbind(Intent).

 onCreate() The system calls this method when the service is first

created using onStartCommand() or onBind(). This call is required to

perform one-time set-up.

 onDestroy() The system calls this method when the service is no

longer used and is being destroyed. Your service should implement

this to clean up any resources such as threads, registered listeners,

receivers, etc.

Example:
 Start a Service that explicitly performs

 the following:

 Continuously playing a ringtone.

 Stops playing a ringtone.

Creating User Interface
 Once the project is loaded come inside activity_main.xml and

create the following layout.

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayoutxmlns:android="http://schemas.android.com/apk/res/android"

 ….
 <Button

 android:id="@+id/buttonStart"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_weight="1"

 android:text="Start Service" />

 <Button

 android:id="@+id/buttonStop"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_weight="1"

 android:text="Stop Service" />

 </LinearLayout>

 </RelativeLayout>

MainActivity.java
package com.example.hp1000.myapplicationservice;

import …;

public class MainActivity extends AppCompatActivity implements View.OnClickListener {

 private Button buttonStart;

 private Button buttonStop;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 buttonStart = (Button) findViewById(R.id.buttonStart);

 buttonStop = (Button) findViewById(R.id.buttonStop);

 buttonStart.setOnClickListener(this); //attaching onclicklistener to buttons

 buttonStop.setOnClickListener(this);

 }

MainActivity.java

 @Override

 public void onClick(View view) {

 if (view == buttonStart) {

 startService(new Intent(this, MyService.class)); //starting service

 } else if (view == buttonStop) {

 stopService(new Intent(this, MyService.class)); //stopping service

 }

 }

}

Creating Service
package com.example.hp1000.myapplicationservice;

import …;
 public class MyService extends Service {

 private MediaPlayer player; //creating a mediaplayer object

 @Override

 public Ibinder onBind(Intent intent) {

 return null;

 }

 @Override

 public int onStartCommand(Intent intent, int flags, int startId) {

 player = MediaPlayer.create(this,Settings.System.DEFAULT_RINGTONE_URI) ;

 //getting systems default ringtone

 player.setLooping(true); //this will make the ringtone continuously playing

 player.start(); //staring the player

 return START_STICKY; //start sticky means service explicitly started and stopped

 }

 @Override

 public void onDestroy() {

 super.onDestroy();

 player.stop(); //stopping the player when service is destroyed

 }

}

Defining Service in Manifest
 <?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="net.simplifiedcoding.androidserviceexample">

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity android:name=".MainActivity">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <!-- defining the service class here -->

 <service android:name=".MyService" />

 </application>

</manifest>

Reference
 Services | Android Developers

 https://developer.android.com/guide/components/services.html

 Implementing an Android Started Service in Android Studio

 http://www.techotopia.com/index.php/Implementing_an_Android_

Started_Service_in_Android_Studio

 Android - Services

 https://www.tutorialspoint.com/android/android_services.htm

https://developer.android.com/guide/components/services.html
http://www.techotopia.com/index.php/Implementing_an_Android_Started_Service_in_Android_Studio
http://www.techotopia.com/index.php/Implementing_an_Android_Started_Service_in_Android_Studio
https://www.tutorialspoint.com/android/android_services.htm

