
Implicit and Explicit

Parallel Languages For High

Performance Computing

Basic approaches
Basically, there are three approaches to programming high

performance computers:

 take an existing language and let all the work been done by the

compiler;

 extend an existing (sequential) language with new constructs to

represent parallelism;

 design a completely new language that incorporates parallel

features.

The first approach
 Is called the implicit approach.

 From a user perspective this would be ideal.

 Existing codes could run immediately on high performance

platforms, without users having to worry about changing and

optimising programs.

 This can lead to substantial savings in development costs and is

also very attractive for vendors of high performance computers.

 Although there has definitely been some success in this area, there

are some problems.

The first approach (Problems)
The second problem: The full parallel potential of the problem cannot

always be exploited. This is due to the fact that certain information

known to the programmer is lost when coding the problem in a

computer language or that the programmer has introduced fake

dependencies in the program, which inhibit the compiler from doing the

necessary transformations.

The second problem: is related to the architectural characteristics of

the underlying system. The performance of a chosen algorithm strongly

depends on the architecture on which the algorithm is executed. Many

of the current algorithms are based on the characteristics of computer

systems designed a decade or more ago. These systems had small

memories and hence algorithms were favoured which put a limited

burden on the memory capacity. Storage capacity of current 1

memories is not effectively used by these old algorithms. So, to profit

from the advances in hardware technology, it turns out that these

algorithms need to be replaced by newer algorithms.

The second approach
 Is called the explicit approach.

 existing languages are extended with new language constructs as to

express parallelism.

 The clear advantage of this approach is that users have already

been trained in using the base languages.

 To get their programs running efficiently, only a limited set of extra

functions need to be applied.

 The problems with this approach:

 Concentrate on the sometimes difficult interaction between the

base sequential language and the parallel features (debugging).

 Moreover, there is a lack of standardisation, meaning that a

number of extensions has been developed with similar

functionality, but different appearance.

The third approach
 The last approach is to develop a new language as to present a

coherent approach to programming for high performance machines.

 In designing a new language one can choose an implicit, an explicit,

or a hybrid approach.

 The problems with this approach:

 This approach clearly implies rewriting of the application

software, which can be very costly and has many risks as well.

The first approach (example)
 Compiler-based detections and transformations

 The basic instructions are defined in terms of operations on vectors instead

of scalars.

 languages like FORTRAN 77 the basic operations are defined on scalars.

 To use these vector computers efficiently, the scalar operations in a

program written in such languages must be transformed into vector

operations.

 To give a simple example,

 In vector computers, this operation is implemented by loading both b(1:3)

and c(1:3) from memory, feeding them one element after the other to a

pipelined adder and getting – after a few letancy– the results out element by

element, which are then finally stored back in memory. In vector computers,

the data elements are processed in a stream by the operational units.

the program transformation
DO i = 1, 3

 a(i) = b(i) + c(i)

END DO

a(1:3)=b(1:3)+c(1:3)

The second approach

(example)
 An alternative way of getting speed up is to use a parallel computer. In a

parallel computer, each processor is executing a part of the program. To be

able to use a parallel computer, a compiler must identify which parts of a

program can be executed in parallel. It is easy to see that each body

instance of the above loop can be independently executed. Hence, each

index can be assigned to a different processor without any order

restrictions.

 To indicate the (possible) parallel execution of a loop, the keyword DO can

be replaced by the keyword PAR DO, indicating that the iterations can be

processed independently

 We could assign a(1)=b(1)+c(1) to Processor 1, a(2)=b(2)+c(2) to Processor

2, etc., but any other order is also allowed.

the program hgfhjlkm r Updated program
DO i = 1, 3

 a(i) = b(i) + c(i)

END DO

PAR DO i = 1, 3

 a(i) = b(i) + c(i)

END DO

Computation strategies
 Lazy evaluation (call-by-need)

 is an evaluation strategy which delays the evaluation of

an expression until its value is needed (non-strict evaluation) and

which also avoids repeated evaluations (sharing).

 Example:

 fun g(x,y,z) = if x<2 then y+3 else z+6

Depending on the value of x, either the value of y or the value of z will be

required, but not both.

Computation is demand-driven: we only compute as much of the

intermediate computation as we need to get the result.

Require analysing of the program

Computation strategies
 Eager evaluation (call-by-value)

 Eager evaluation means expression is evaluated as soon as it is

encountered.

 Also, named as a strict evaluation or a greedy evaluation,

 All arguments to a function or operator are evaluated before the

function is applied

e.g.: (square (a+ (b* 2)))

Models of parallel

computation: a systems view
 SD : Single Data space (no distribution)

 MD : Multiple Data spaces (distribution)

 SP : Single Program

 MP : Multiple (different) Programs

 * : Replication operator (multiple copies)

A specific model of a parallel

system
 Any specific model of a parallel system is then defined by combining

a program and a data space qualifier and an optional *.

 The data space qualifier indicates if data is considered to reside in a

single common memory (such as in shared-memory systems) or is

distributed among logically different memories (such as in distributed-

memory systems).

 The program qualifier tells us if the model allows for a single program or

(functionally) different programs in execution.

 The * qualifier indicates if multiple copies of programs or data are

allowed

A specific model of a parallel

system (examples)
 Examples:

 a sequential model is defined as SPSD in this system.

 A model defined as MPSD, allows the creation of multiple,

functionally different programs acting on a single, non-distributed

data space.

 Another classification we will encounter is SP*MD, meaning

multiple, identical programs acting on multiple data spaces.

 Along these lines SPMD means a single program acting on

multiple data spaces.

 The classical SIMD computer, such as the CM-2, conforms to

this model, where a single program residing in a single controller

acts on multiple (simple) processing elements, each storing a

single data element

