Which Classifer is better? High Skew case

T1	F	PREDICTED CI	ASS
		Class=Yes	Class=No
	Class=Yes	50	50
ACTUAL CLASS	Class=No	100	9900

T2	F	PREDICTED CL	ASS
		Class=Yes	Class=No
	Class=Yes	99	1
ACTUAL CLASS	Class=No	1000	9000

T3	F	PREDICTED CL	ASS
-		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	99	1
	Class=No	100	9900

Building Classifiers with Imbalanced Training Set

- Modify the distribution of training data so that rare class is well-represented in training set
 - Undersample the majority class
 - Oversample the rare class

Which Classifer is better?

T1	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	50	50
	Class=No	1	99

T2		PREDICTED CL	ASS
		Class=Yes	Class=No
	Class=Yes	99	1
ACTUAL CLASS	Class=No	10	90

T3	1	PREDICTED CL	ASS
10		Class=Yes	Class=No
	Class=Yes	99	1
ACTUAL	Class=No	1	99

Precision (p) = 0.98

TPR = Recall (r) = 0.5

FPR = 0.01

TPR/FPR = 50

F - measure = 0.66

Precision (p) = 0.9 TPR = Recall (r) = 0.99 FPR = 0.1 TPR/FPR = 9.9 F - measure = 0.94

Precision (p) = 0.99 TPR = Recall (r) = 0.99 FPR = 0.01 TPR/FPR = 99 F - measure = 0.99

Which Classifer is better? Medium Skew case

		PREDICTED CL	ASS
17		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	50	50
	Class=No	10	990

T2		PREDICTED CL	ASS
12		Class=Yes	Class=No
	Class=Yes	99	1
ACTUAL	Class=No	100	900

Т3	PREDICTED CLASS		
		Class=Yes	Class=No
	Class=Yes	99	1
ACTUAL CLASS	Class=No	10	990

Precision (p) = 0.83TPR = Recall (r) = 0.5FPR = 0.01TPR/FPR = 50F - measure = 0.62

Precision (p) = 0.5 TPR = Recall (r) = 0.99 FPR = 0.1 TPR/FPR = 9.9 F - measure = 0.66

Precision (p) = 0.9 TPR = Recall (r) = 0.99 FPR = 0.01 TPR/FPR = 99 F - measure = 0.94

Which of these classifiers is better?

Α	PREDICTED CLASS		
		Class=Yes	Class=No
	Class=Yes	10	40
ACTUAL CLASS	Class=No	10	40

Precision (p) =
$$0.5$$

TPR = Recall (r) = 0.2
FPR = 0.2
F - measure = 0.28

В		PREDICTED CL	ASS
		Class=Yes	Class=No
	Class=Yes	25	25
ACTUAL CLASS	Class=No	25	25

Precision (p) =
$$0.5$$

TPR = Recall (r) = 0.5
FPR = 0.5
F - measure = 0.5

2		PREDICTED CL	ASS
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	40	10
	Class=No	40	10

Precision (p) =
$$0.5$$

TPR = Recall (r) = 0.8
FPR = 0.8
F - measure = 0.61

Dealing with Imbalanced Classes - Summary

- Many measures exists, but none of them may be ideal in all situations
 - Random classifiers can have high value for many of these measures
 - TPR/FPR provides important information but may not be sufficient by itself in many practical scenarios
 - Given two classifiers, sometimes you can tell that one of them is strictly better than the other
 - ◆C1 is strictly better than C2 if C1 has strictly better TPR and FPR relative to C2 (or same TPR and better FPR, and vice versa)
 - Even if C1 is strictly better than C2, C1's F-value can be worse than C2's if they are evaluated on data sets with different imbalances
 - Classifier C1 can be better or worse than C2 depending on the scenario at hand (class imbalance, importance of TP vs FP, cost/time tradeoffs)

Alternative Measures

A	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
CLASS	Class=No	10	40

Precision $(p) = 0.8$
TPR = Recall(r) = 0.8
FPR = 0.2
F-measure $(F) = 0.8$
Accuracy $= 0.8$

$$\frac{\text{TPR}}{\text{FPR}} = 4$$

В	PREDICTED CLASS		
	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
CLASS	Class=No	1000	4000

$$\frac{TPR}{FPR} = 4$$

Measures of Classification Performance

	PREDICTED CLASS		
		Yes	No
ACTUAL CLASS	Yes	TP	FN
02100	No	FP	TN

α is the probability that we reject the null hypothesis when it is true. This is a Type I error or a false positive (FP).

 β is the probability that we accept the null hypothesis when it is false. This is a Type II error or a false negative (FN).

$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

$$ErrorRate = 1 - accuracy$$

$$Precision = Positive \ Predictive \ Value = \frac{TP}{TP + FP}$$

$$Recall = Sensitivity = TP Rate = \frac{TP}{TP + FN}$$

$$Specificity = TN \ Rate = \frac{TN}{TN + FP}$$

$$FP\ Rate = \alpha = \frac{FP}{TN + FP} = 1 - specificity$$

$$FN\ Rate = \beta = \frac{FN}{FN + TP} = 1 - sensitivity$$

$$Power = sensitivity = 1 - \beta$$

13

Alternative Measures

	PREDICTED CLASS		
ACTUAL		Class=Yes	Class=No
	Class=Yes	10	0
CLASS	Class=No	10	980

	PRE	EDICTED CL	ASS
	100000000000000000000000000000000000000	Class=Yes	Class=No
ACTUAL	Class=Yes	1	9
CLASS	Class=No	0	990

Precision (p) =
$$\frac{10}{10+10}$$
 = 0.5

Recall (r) =
$$\frac{10}{10+0}$$
 = 1

F-measure (F) =
$$\frac{2*1*0.5}{1+0.5}$$
 = 0.62

Accuracy =
$$\frac{990}{1000}$$
 = 0.99

Precision (p) =
$$\frac{1}{1+0}$$
 = 1
Recall (r) = $\frac{1}{1+9}$ = 0.1
F-measure (F) = $\frac{2*0.1*1}{1+0.1}$ = 0.18

Accuracy = $\frac{991}{1000}$ = 0.991

Which of these classifiers is better?

A

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
CLASS	Class=No	10	40

Precision (p) = 0.8

Recall (r) = 0.8

F - measure (F) = 0.8

Accuracy = 0.8

B

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
CLASS	Class=No	1000	4000

Precision (p) = ~ 0.04

Recall (r) = 0.8

F-measure (F) = ~ 0.08

Accuracy =~ 0.8

Alternative Measures

	PREDICTED CLASS		
		Class=Yes	Class=No
	Class=Yes	а	b
ACTUAL CLASS	Class=No	С	d

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) = $\frac{a}{a+b}$
F - measure (F) = $\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$

Alternative Measures

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	10	0
CLASS	Class=No	10	980

Precision (p) =
$$\frac{10}{10+10}$$
 = 0.5
Recall (r) = $\frac{10}{10+0}$ = 1
F-measure (F) = $\frac{2*1*0.5}{1+0.5}$ = 0.62
Accuracy = $\frac{990}{1000}$ = 0.99

Which model is better?

A

	PREDICTED		
		Class=Yes	Class=No
ACTUAL	Class=Yes	Class=Yes 0	10
	Class=No	0	990

Accuracy: 99%

B

	PREDICTED		
		Class=Yes	Class=No
ACTUAL	Class=Yes	10	0
	Class=No	500	490

Accuracy: 50%

7

Which model is better?

A

	PREDICTED		
		Class=Yes	Class=No
ACTUAL	Class=Yes	5	5
	Class=No	0	990

B

	PREDICTED		
		Class=Yes	Class=No
ACTUAL	Class=Yes	10	0
	Class=No	500	490

Accuracy

	PREDICTED CLASS		
ALTERNA	CARAGO	Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

□ Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Problem with Accuracy

- Consider a 2-class problem
 - Number of Class NO examples = 990
 - Number of Class YES examples = 10
- □ If a model predicts everything to be class NO, accuracy is 990/1000 = 99 %
 - This is misleading because this trivial model does not detect any class YES example
 - Detecting the rare class is usually more interesting (e.g., frauds, intrusions, defects, etc)

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	0	10
	Class=No	0	990

6

Class Imbalance Problem

- Lots of classification problems where the classes are skewed (more records from one class than another)
 - Credit card fraud
 - Intrusion detection
 - Defective products in manufacturing assembly line
 - COVID-19 test results on a random sample

Key Challenge:

 Evaluation measures such as accuracy are not wellsuited for imbalanced class

3

Confusion Matrix

Confusion Matrix:

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	а	b
	Class=No	С	d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

4

ITIS404 Data Mining/Business Intelligence

Spring 2024

Data Mining Classification: Alternative Techniques

Imbalanced Class Problem

Introduction to Data Mining, 2nd Edition by Tan, Steinbach, Karpatne, Kumar