Statistical Framework for Correlation

 Correlation of ideal similarity and proximity matrices for the K-means clusterings of the following two data sets.

Corr = -0.9235

Corr = -0.5810

Correlation is negative because it is calculated between a distance matrix and the ideal similarity matrix. Higher magnitude is better.

Histogram of correlation for 500 random data sets of size 100 with and y values of points between and 0.8.

statistical Framework for SSE

Example

 Compare SSE of three cohesive clusters against three clusters in random data

SSE = 0.005

Histogram shows SSE of three clusters in 500 sets of random data points of size 100 distributed over the range 0.2-0.8 for x and y values

Assessing the Significance of Cluster Validity Measures

- Need a framework to interpret any measure.
 - For example, if our measure of evaluation has the value, 10, is that good, fair, or poor?
- Statistics provide a framework for cluster validity
 - The more "atypical" a clustering result is, the more likely it represents valid structure in the data
 - Compare the value of an index obtained from the given data with those resulting from random data.
 - If the value of the index is unlikely, then the cluster results are valid

Supervised Measures of Cluster Validity: Entropy and Purity

Table 5.9. K-means Clustering Results for LA Document Data Set

						the same of the sa	AND ADDRESS OF THE PARTY OF THE	
Cluster	Entertainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

petermining the Correct Number of Clusters

- SSE is good for comparing two clusterings or two clusters
- SSE can also be used to estimate the number of clusters

judging a Clustering Visually by its Similarity Matrix

· Clusters in random data are not so crisp

DBSCAN

Judging a Clustering Visually by its Similarity Matrix

 Order the similarity matrix with respect to cluster labels and inspect visually.

Measuring Cluster Validity Via Correlation

Two matrices

- Proximity Matrix
- Ideal Similarity Matrix
 - One row and one column for each data point
 - An entry is 1 if the associated pair of points belong to the same cluster
 - An entry is 0 if the associated pair of points belongs to different clusters
- Compute the correlation between the two matrices
 - Since the matrices are symmetric, only the correlation between n(n-1) / 2 entries needs to be calculated.
- High magnitude of correlation indicates that points that belong to the same cluster are close to each other.
 - Correlation may be positive or negative depending on whether the similarity matrix is a similarity or dissimilarity matrix
- Not a good measure for some density or contiguity based clusters.

Unsupervised Measures: Silhouette Coefficient

- Silhouette coefficient combines ideas of both cohesion and separation, but for individual points, as well as clusters and clusterings
- For an individual point, i
 - Calculate a = average distance of i to the points in its cluster
 - Calculate $b = \min$ (average distance of i to points in another cluster)
 - The silhouette coefficient for a point is then given by

$$s = (b - a) / \max(a,b)$$

- Value can vary between -1 and 1
- Typically ranges between 0 and 1.
- The closer to 1 the better.

 Can calculate the average silhouette coefficient for a cluster or a clustering

Unsupervised Measures: Cohesion and Separation

- A proximity graph-based approach can also be used for cohesion and separation.
 - Cluster cohesion is the sum of the weight of all links within a cluster.
 - Cluster separation is the sum of the weights between nodes in the cluster and nodes outside the cluster.

cohesion

separation

Unsupervised Measures: Conesion and Separation

- Cluster Cohesion: Measures how closely related are objects in a cluster
 - Example: SSE
- Cluster Separation: Measure how distinct or wellseparated a cluster is from other clusters
- Example: Squared Error
 - Cohesion is measured by the within cluster sum of squares (SSE) $SSE = \sum_{i} \sum_{x \in C_{i}} (x m_{i})^{2}$
 - Separation is measured by the between cluster sum of squares $SSB = \sum_{i} |C_{i}| (m m_{i})^{2}$

Where $|C_i|$ is the size of cluster i

Clusters round in Kandom Data

- Idea is that for points in a cluster, their kth nearest neighbors are at close distance
- Noise points have the kth nearest neighbor at farther distance
- So, plot sorted distance of every point to its kth nearest neighbor

Cluster Validity

- For supervised classification we have a variety of measures to evaluate how good our model is
 - Accuracy, precision, recall
- For cluster analysis, the analogous question is how to evaluate the "goodness" of the resulting clusters?
- But "clusters are in the eye of the beholder"!
 - In practice the clusters we find are defined by the clustering algorithm
- Then why do we want to evaluate them?
 - To avoid finding patterns in noise
 - To compare clustering algorithms
 - To compare two sets of clusters
 - To compare two clusters

When DBSCAN Does NOT Work Well

Original Points

- Varying densities
- High-dimensional data

(MinPts=4, Eps=9.92).

(MinPts=4, Eps=9.75)

DBSCAN Algorithm

- Form clusters using core points, and assign border points to one of its neighboring clusters
- 1: Label all points as core, border, or noise points.
- 2: Eliminate noise points.
- 3: Put an edge between all core points within a distance Eps of each other.
- 4: Make each group of connected core points into a separate cluster.
- 5: Assign each border point to one of the clusters of its associated core points

DBSCAN: Core, Border and Noise Points

Original Points

Point types: core, border and noise

Eps = 10, MinPts = 4

Density Based Clustering

 Clusters are regions of high density that are separated from one another by regions on low density.

DBSCAN

- DBSCAN is a density-based algorithm.
 - Density = number of points within a specified radius (Eps)
 - A point is a core point if it has at least a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
 - Counts the point itself
 - A border point is not a core point, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point or a border point

Hierarchical Clustering: Time and Space requirements

- O(N²) space since it uses the proximity matrix.
 - N is the number of points.
- O(N³) time in many cases
 - There are N steps and at each step the size,
 N², proximity matrix must be updated and searched
 - Complexity can be reduced to O(N² log(N))
 time with some cleverness

Cluster Similarity: Ward's Method

- Similarity of two clusters is based on the increase in squared error when two clusters are merged
 - Similar to group average if distance between points is distance squared
- Less susceptible to noise
- Biased towards globular clusters
- Hierarchical analogue of K-means
 - Can be used to initialize K-means

Hierarchical Clustering: Group Average

Nested Clusters

Dendrogram

Limitations of MAX

Original Points

Two Clusters

- Tends to break large clusters
- Biased towards globular clusters

Group Average

 Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum\limits_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}} proximity(p_{i}, p_{j})}{|Cluster_{i}| \times |Cluster_{j}|}$$

Distance Matrix:

	pl	p2	рЗ	p4	p5	р6
pl	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
рЗ	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
р6	0.23	0.25	0.11	0.22	0.39	0.00

Hierarchical Clustering: MAX

Nested Clusters

Dendrogram

Limitations of MIN

MAX or Complete Linkage

- Proximity of two clusters is based on the two most distant points in the different clusters
 - Determined by all pairs of points in the two

Distance Matrix:

					-
р1	p2	р3	p4	p5	р6
0.00	0.24	0.22	0.37	0.34	0.23
0.24	0.00	0.15	0.20	0.14	0.25
0.22	0.15	0.00	0.15	0.28	0.11
0.37	0.20	0.15	0.00	0.29	0.22
0.34	0.14	0.28	0.29	0.00	0.39
0.23	0.25	0.11	0.22	0.39	0.00
	0.00 0.24 0.22 0.37 0.34	0.00 0.24 0.24 0.00 0.22 0.15 0.37 0.20 0.34 0.14	0.00 0.24 0.22 0.24 0.00 0.15 0.22 0.15 0.00 0.37 0.20 0.15 0.34 0.14 0.28	0.00 0.24 0.22 0.37 0.24 0.00 0.15 0.20 0.22 0.15 0.00 0.15 0.37 0.20 0.15 0.00 0.34 0.14 0.28 0.29	0.00 0.24 0.22 0.37 0.34 0.24 0.00 0.15 0.20 0.14 0.22 0.15 0.00 0.15 0.28 0.37 0.20 0.15 0.00 0.29 0.34 0.14 0.28 0.29 0.00

Hierarchical Clustering: MIN

Nested Clusters

Dendrogram

Strength of MIN

Original Points

Six Clusters

· Can handle non-elliptical shapes

How to Define Inter-Cluster Similarity

p1 p2 **p3 p4**

Proximity Matrix

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

MIN or Single Link

- Proximity of two clusters is based on the two closest points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph
- Example:

Distance Matrix:

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
рЗ	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
р5	0.34	0.14	0.28	0.29	0.00	0.39
р6	0.23	0.25	0.11	0.22	0.39	0.00

How to Define Inter-Cluster Similarity

p1 p2 p3 p4 p5 .
p1 p2 p3 p4 p5 .
p2 p3 p4 p5 .

Proximity Matrix

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

How to Define Inter-Cluster Similarity

- · MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Proximity Matrix

How to Define Inter-Cluster Distance

 p1
 p2
 p3
 p4
 p5
 .

 p1
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .</

Proximity Matrix

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

How to Define Inter-Cluster Similarity

- · MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Proximity Matrix

Step 4

We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.

Proximity Matrix

Step 5

The question is "How do we update the proximity matrix?"

Steps 1 and 2

 Start with clusters of individual points and a proximity matrix p1 p2 p3 p4 p5

Intermediate Situation

After some merging steps, we have some clusters

C4 C5

Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - · Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains an individual point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time