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Statistical Framework for Correlation
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Wamework for SSE
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— Compare SSE of three cohesive clusters against three clusters in

random data
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Assessing the Significance of Cluster Validity Measures
A A Ao~ TR N N AR ‘thuﬂmwmrJrW

¢ Need a framework to interpret any measure.

— For example, if our measure of evaluation has the value, 10, is that
good, fair, or poor?

e Statistics provide a framework for cluster vahdlty
- The more “atypical” a clustering result is, the more likely it represents
valid structure in the data
— Compare the value of an index obtained from the given d

resulting from random data.
e Ifthe value of the index is unlikely, then the cluster results are valid

ata with those



masures of Cluster Validity: Entropy and Purity
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Table 5.9. K-means Clustering Results for LA Document Data Set

FE};{;_ Entertainment | Financial | Foreign | Metro | National | Sports | Entropy | Purity
r-f’ 3 5 40 506 96 27 | 1.2270 | 0.7474
vy © 4 T 280 29 39 2| 1.1472 | 0.7756
3 1 1 i 70 4 671 | 0.1813 | 0.9796
4 10 162 3 119 73 2 | 1.7487 | 0.4390
5 331 92 5 70 13 23 | 1.3976 | 0.7134
G 5 358 12 212 48 13 | 1.5523 | 0.5525
Total | 354 555 | 341 (SSNais 2731 738 | 1.1450 | 0.7203
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Judgmg a Clustermg Vlsually by its Similarity Matrix
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© Order the sumnlarlty matrix wnth respect to cluster
labels and inspect visually.
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P “ing Cluster Validity Via Correlation

B g vt

Proximity Matrix

Ideal Similarity Matrix
o One row and one column for each data point
o Anentryis 1ifthe associated pair of points belong to the same cluster
o Anentryis 0 if the associated pair of points belongs to different clusters

Compute the correlation between the two matrices

—  Since the matrices are symmetric, only the correlation between
n(n-1) / 2 entries needs to be calculated.

High magnitude of correlation indicates that points that
belong to the same cluster are close to each other.

—  Correlation may be positive or negative depending on whether
the similarity matrix is a similarity or dissimilarity matrix

Not a good measure for some density or contiguity based
clusters.




Unsupervised Measures: Silhouette Coefficient

e Silhouette coefficient combines ideas of both cohesion and separatxon
but for individual points, as well as clusters and clusterings

e For an individual point, i
— Calculate a = average distance of ito the points in its cluster
_ Calculate b = min (average distance of i to points in another cluster)

_ The silhouette coefficient for a point is then given by

Distances used
to calculate b/

s = (b —a) / max(a,b)

Distances used
to calculate a

— Value can vary between -1 and 1
— Typically ranges between 0 and 1.
— The closer to 1 the better.

N

e Can calculate the average silhouette coefficient for a cluster or a
clustering




orvised Measures: Cohesion and Separation
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== proximity graph-based approach can also be used for
cohesion and separation.
_ Cluster cohesion is the sum of the weight of all links within a cluster.

_ Cluster separation is the sum of the weights between nodes in the cluster
and nodes outside the cluster.

cohesion separation




[ ~e Cluster Cohesion: Measures how Closely related
| are objects in a cluster

- Example: SSE

e Cluster Separation: Measure how distinct or well-
separated a cluster is from other Clusters
e Example: Squared Error

— Separation is measured by the between cluster sum of squares
SSB = leil(m —m;)?

L

Where |(;|is the size of cluster /

—

Unsupervised Measures: Cohesion and Separation
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. Ideais that for points in a cluster, their k"
neighbors are at close distance , their k™ nearest

Noise points have the k' nearest neighbor at farther

distance
So, plot sorted distance of every point to its k™

nearest neighbor
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. Cluster validity
WM

we have a variety of

e Forsu ervised classification
measuﬁes to evaluate how good our model IS
— Accuracy, precision, recall

?

(%_uestion is how to
ing clusters:

o For cluster analysis, the analogous
evaluate the “goodness of the resul
o But “clusters are in the eye of the beholder”!
_ In practice the clusters we find are defined by the clustering
algorithm

e Then why do we want to evaluate them?
— To avoid finding patterns in noise
— To compare clustering algorithms
— To compare two sets of clusters
— To compare two clusters




When DBSCAN Does NOT Work Well
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« Varying densities

 High-dimensional data
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pBSCAN ARIGOTNTLNM

e FOrm clus_ters using core points, and assign
border points to one of its neighboring clusters

1: Label all points as core, border, or noise points,
2: Eliminate noise points.

3;hPUt an edge betwaen all core points within a distance Eps of each
other.

4. Make each group of connected core points into a separate cluster.

5: Aisign each border point to one of the clusters of its associated core
points




DBSCAN: Core, Borde
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Density Based Clustering

e Clusters are regions of high density that are

separated from one another by regions on low
density.

DBSCAN

- T o rye

[ s s = saminetn s whan T gkt = T

o DBSCAN is a density-based algorithm.

Density = number of points within a specified radius (Eps)

A point is a core point if it has at least a specified number of
points (MinPts) within Eps

¢ These are points that are at the interior of a
cluster

¢ Counts the point itself

A border point is not a core point, but is in the neighborhood
of a core point

A noise point is any point that is not a core point or a border
point




Hierarchical Clustering: Time and Space ‘

e O(N?) space since it uses the proximity matrix.
= N is the number of points.

e O(NY) time in many cases

- There are N steps and at each step the size,
N< proximity matrix must be updated and
searched

— Complexity can be reduced to O(N? log(N) )
time with some cleverness




Cluster Similarity: Ward's Method

o Similarity of two clusters is based on the increase
In squared error when two clusters are merged

~ Similar to group average If distance between
points is distance squared

e Less susceptible to noise

e Biased towards globular clusters

e Hierarchical analogue of K-means
— Can be used to initialize K-means




Hierarchical Clustering: Group Average
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Limitations of MAX
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« Tends to break large clusters

. Biased towards globular clusters
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Two Clusters

Group Average

e

e Proximity of two clusters is the average of pairwise proximity
between points in the two clusters.

proximity(Cluster;, Cluster;) =

0.6

0.5

¥ proximity(p,,P;)
p,eCluster,
p,eCIuster,

| Cluster, | x| Cluster; |

Distance Matrix:
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Limitations of MIN

Original Points
o? { s
vy
- ;  hs
« Sensitive to noise Three Clusters
MAX or Complete Linkage
e Proximity of two clusters is based on the two
most distant points in the different clusters
_ Determined by all pairs of points in the two
rliiectarc
0.6 — o :
( 3
0.5 Distance Matrix:
0.4} -2 .2 pl p2 p3 p4 pd p6
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|  [p2 {024 [0.00]0.15]0.20 | 0.14 0.25
o AR L don ; i [ p3[022]0.15]000]0.15 0.25 [ 0.11
. [pi[037 {020 | 015 [ 0.00 [0.29 | 0.22
37 SIS WS— a— - 0% AN L N
X ; | | [pe]023 025 [ 00 0.22 | 0.39 | 0.00
0 02 04 0.6




Hierarchical Clustering: MIN
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e MIN

e MAX

e Group Average :

e Distance Between Centroids Proximity Matrix
e Other methods driven by an objective

function
_ Ward's Method uses squared error

MIN or Single Link

e Proximity of two clusters is based on the two
closest points in the different clusters
— Determined by one pair of points, i.e., by one
link in the proximity graph

e Example:
Distance Matrix:

0.6/
s g pl p2 p3 pd pd p6
Bl " pl | 0.00 [ 0.24 | 0.22 | 0.37 | 0.34 0.23
‘ e2 i p2 | 0.24 | 0.00 | 0.15 | 0.20 0.14 | 0.25
L S 7 I ESEPSEE p3 | 0.22 1 0.15 | 0.00 | 0.15 0.28 | 0.11
0.2} _,.,.4 e p4 [0.37 10.20 | 0.15 | 0.00 0.29 | 0.22
01“_ e i p5 [ 0.34 [ 0.14 | 0.28 | 0.29 | 0.00 | 0.39
g o gem e p6 | 0.23 [ 0.25 | 0.11 | 0.22 | 0.39 0.00
0. i i J

0 0.2 0.4 06




" How to Define Inter-Cluster Si

L ELELS

e MIN P
e MAX '
b Srapass Proximity Matrix
e Distance Between Centroids

e Other methods driven by an objective

function
— Ward's Method uses squared error

How to Define Inter-Cluster Similarity

——— —

p1 | p2 p3 p4 | p5

p1

p2

p3

p4

p5

MIN

MAX

]

®

e Group Average ; :
e Distance Between Centroids Proximity Matrix
®

Other methods driven by an objective
function
-~ Ward's Method uses squared error



How to Define Inter-Cluster Distance

pi[p2 | p3
Similarity? E
A o1
p3
p4
e MIN £
e MAX
e Group Average '
e Distance Between Centroids * Proximity S
e Other methods driven by an objective

function
_ Ward's Method uses squared error

How to Define Inter-Cluster Similarity

p1 | p2 p3 | p4 |pS

p1

p2

p3

p4

p5

MIN

]
e MAX

e Group Average
e Distance Between Centroids Proximity Matrix
e Other methods driven by an objective

function
— Ward's Method uses squared error



Step 4

e We want to merge the two closest clusters (C2 and C5) and
update the proximity matrix. o1 lea| es| ca c,

c1 WA
oy L "\
LN YN SO s.“
cz " . W : ".. \'\'g,\

m .. o N
" (o] INNN NN SR
A Proximity Matrix

Step 5

dedie X =

‘e The question is “How do we update the proximity matrix?”

c2
u
c1| cs|] c3| ca
c1 ?
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@ Proxim?ity Matrix
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Steps 1 and 2 |

e Start with clusters of individual points and a
proximity matrix

.| p2 | p3 | p4ips |...
p1
N P2
v O R
O O o8
O :
O . Proximity Matrix
O
O
OO O
©o o © © o o 2
p1 p2 p3 p4 P9 p10  p11  p12

F Intermediate Situation

e After some merging steps, we have some clusters
c1)c2| C3| C4|C5

C1

c2
@ :
C3
T c4
C5
@ Proximity Matrix

T 2. 200

' l
| L

:‘—;rLl pi

p1 p2 p3 pé P9 pl0 p11 pi2




Hierarchical Clustering
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e Two main types of hierarchical clustering

- Agglomerative:
¢ Start with the points as individual clusters

» At each step, merge the closest pai: of clusters until only one cluster
(or k clusters) left

- Divisive:
¢ Start with one, all-inclusive cluster

¢ At each step, split a cluster until each cluster contains an individual
point (or there are k clusters)

e Traditional hierarchical algorithms use a similarity or
distance matrix
~ Merge or split one cluster at a time




