Hierarchical Clustering |
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e Produces a set of nested clusters organized as a
hierarchical tree
e Can be visualized as a dendrogram

~ A tree like diagram that records the

sequences of merges or splits
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Strengths of Hierarchical Clustering
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e Do not have to assume any particular number of
clusters

— Any desired number of clusters can be
obtained by ‘cutting’ the dendrogram at the

proper level

e They may correspond to meaningful taxonomies

— Example in biological sciences (e.g., animal
kingdom, phylogeny reconstruction, ...)
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K-means Clusters
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Overcoming K-means Limitations
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Original Points

One solution is to find a large number of clusters such that each of them represents a part of
a natural cluster. But these small clusters need to be put together in a post-processing step.

K-means Clusters



Overcoming K-means Limitations
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One solution is to find a large number of clusters such that each of them represents a part of a
natural cluster. But these small clusters need to be put together in a post-processing step.




K-means (3 Clusters)

Original Points

Limitations of K-means: Differing Density
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Bisecting K-means Example

Limitations of K-means
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e K-means has problems when clusters are of
differing
— Sizes
— Densities
- Non-globular shapes

e K-means has problems when the data contains
outliers.

— One possible solution is to remove outliers
before clustering




Bisecting K-means
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e Bisecting K-means algorithm

Variant of K-means that can produce a partitional or a
hierarchical clustering

T i s o Y ik gt i 8 .

- Initialize the list of clusters to contain the cluster containing all points.
repeat
Select a cluster from the list of clusters
for i = 1 to number_of _iterations do
Bisect the selected cluster using basic K-means

end for
Add the two clusters from the bisection with the lowest SSE to the list of clusters.

until Until the list of clusters contains K clusters

CLUTO: http://glaros.dtc.umn.edu/gkhomel/cluto/cluto/overview




K-means++
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e This approach can be slower than random initialization,
but very consistently produces better results in terms of
SSE

—  The k-means++ algorithrn guarantees an approximation ratio
O(log k) in expectation, where k is the number of centers

e To select a set of initial centroids, C, perform the following

1. Select an initial point at random to be the first centroid
2. Fork -1 steps

For each of the N points, x, 1 </7<N, find the minimum squared
distance to the currently selected centroids, Cy, ..., C; 1 <j<Kk,
i.e.,mjin d?( C; x;)

4, Randomly select a new centroid by choosing a point with probability
: mjin a%( Gj X;) :
proportional to 5 m},ndg( & Xj)IS

_Ln)

5. EndFor




Solutions to Initial Centroids Problem {
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e Multiple runs
— Helps, but probability is not on your side

e Use some strategy to select the k initial centroids
’ and then select among these initial centroids

; — Select most widely separated
¢K-means++ is a robust way of doing this selection

— Use hierarchical clustering to determine initial
centroids

e Bisecting K-means
— Not as susceptible to initialization issues

e ﬂ




10 Clusters Example
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10 Clusters Example
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Starting with some pairs of clusters having three initial centroids, while other
have only one.

e




10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters




10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters




Problems with Selecting Initial Points
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e Ifthere are K ‘real’ clusters then the chance of selecting
one centroid from each cluster is small.

— Chance is relatively small when K is large
—  If clusters are the same size, n, then

number of ways to select one centroid from each cluster K InK K!

P = = —
number of ways to select K centroids (KEn)* KX

—  Forexample, if K = 10, then probability = 10!/10'° = 0.00036

—  Sometimes the initial centroids will readjust thernselves in
‘right’ way, and sometimes they don't

—  Consider an example of five pairs of clusters




Importance of Choosing Initial Centroids ..
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Optimal Clustering
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Sub-optimal Clustering




K-means Objective Function
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e A common objective function (used with Euclidean
distance measure) is Sum of Squared Error (SSE)
— For each point, the error is the distance to the nearest cluster
center
— To get SSE, we square these errors and sum them.

SSE = i > dist*(m,, x)

i—_—'l .\‘eCi

— Xxis a data point in cluster C and m;is the centroid (mean) for
cluster C

— SSE improves in each iteration of K-means until it reaches a
local or global minima.




K-means Clustering - Details

¢ Slmple fterative algorlthm
- Choose initial centroids;
- repeat {assign each point to a nearest centroid; re-compute cluster centroids}
- until centroids stop changing.

e [nitial centroids are often chosen randomly.
- Clusters produced can vary from one run to another

e The centroid is (typically) the mean of the points in the cluster,
but other definitions are possible (see Table 7.2).

e K-means will converge for cornmon proximity measures with
appropriately defined centroid (see Table 7.2)
e Most of the convergence happens in the first few iterations.

- Often the stopping condition is changed to ‘Until relatively few points
change clusters’

e ComplexityisO(n*K*I1*d)

- n = number of points, K = number of clusters,
| = number of iterations, d = number of attributes
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Example of K-means Clusterin
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0 K-means and its variants
0 Hierarchical clustering

0 Density-based clustering

K-means Clustering
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Partitional clustering approach
Number of clusters, K, must be specified
Each cluster is associated with a centroid (center point)

Each point is assigned to the cluster with the closest
centroid

The basic algorithm is very simple

P

Select K points as the initial centroids.

repeat

Form K clusters by assigning all points to the closest centroid.
Recompute the centroid of each cluster.

: until The centroids don’t change




Types of Clusters: Objective Function
e Clusters Defined by an Objective Function

Finds clusters that minimize or maximize an objective function.

Enumerate all possible ways of dividing the points into clusters and
evaluate the ‘goodness' of each potential set of clusters by using
the given objective function. (NP Hard)

Can have global or local objectives.

¢ Hierarchical clustering algorithms typically have local objectives

« Partitional algorithms typically have global objectives
A variation of the global objective function approach is to fit the
data to a parameterized model.

« Parameters for the model are determined from the data.

« Mixture models assume that the data is a ‘mixture’ of a number of
statistical distributions.

Characteristics of the Input Data Are Important

T

e Type of proximity or density measure
— Central to clustering

Depends on data and application

e Data characteristics that affect proximity and/or density are

Dimensionality
¢ Sparseness

— Attribute type

Special relationships in the data
¢ For example, autocorrelation

Distribution of the data

e Noise and Outliers
— Often interfere with the operation of the clustering algorithm

e Clusters of differing sizes, densities, and shapes



e Contiguous Cluster (Nearest neighbor or
Tnn(:?QM) ( 0

« A cluster is a set of points such that a point in a cluster is
closer (or more similar) to one or more other points in the
cluster than to any point not in the cluster.

i

8 contiguous clusters

Types of Clusters: Density-Based
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e Density-based

— A cluster is a dense region of points, which is separated by
low-density regions, from other regions of high density. |

— Used when the clusters are irregular or intertwined, and when
noise and outliers are present.

6 density-based clusters



Types of Clusters: Prototype-Based
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) Prototype-based

— A cluster is a set of objects such that an object in a cluster is
closer (more similar) to the prototype or “center” of a cluster,
than to the center of any other cluster

— The center of a cluster is often a centroid, the average of all
the points in the cluster, or a medoid, the most “representative” \
point of a cluster i




Types of Clusters: Well- Separated
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o Well-Separated Clusters:

— A cluster is a set of points such that any point in a cluster is
closer (or more sitnilar) to every other point in the cluster than
to any point not in the cluster.

3 well-separated clusters




F Types of Clusters
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e \Well-separated clusters

e Prototype-based clusters

e Contiguity-based clusters

e Density-based clusters

e Described by an Objective Function




Other Distinctions Between Sets of Clusters

e Exclusive versus non-exclusive

— In non-exclusive clusterings, points may belong to multiple
clusters.

¢ Can belong to multiple classes or could be ‘border’ points

— Fuzzy clustering (one type of non-
exclusive)

+ In fuzzy clustering, a point belongs to every cluster with some weight
between 0 and 1

¢ Weights must sum to 1
¢ Probabilistic clustering has similar characteristics

e Partial versus complete
— In some cases, we only want to cluster some of the data




Original Points

A Partitional Clustering
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Non-traditional Hierarchical Clustering
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Notion of a Cluster can be Ambiguous
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Types of Clusterings

e A clustering is a set of clusters

e Important distinction between hierarchical and
partitional sets of clusters

— Partitional Clustering

¢ A division of data objects into non-overlapping subsets (clusters)

— Hierarchical clustering

¢ A set of nested clusters organized as a hierarchical tree




;
W
_
ﬁ
|
ﬁ
*

Applications of Cluster Analysis
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e Understanding

— Group related documents
for browsing, group genes
and proteins that have
similar functionality, or

group stocks with similar

price fluctuations

e Summarization

— Reduce the size of large

data sets

Discovered Clusters
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