Limitations of single attribute-based decision poundaries
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yandling interactions given irrelevant attribute i

+.1000 instances
| 0:1000 instances

! Adding Z as a noisy
{ attribute generated
from a uniform
distribution

(a) Three-dimensional data with at-
tributes X, Y, and Z.

Entropy (X) : 0.99
Entropy (Y) : 0.99
Entropy (Z) : 0.98

Attribute Z will be
chosen for splitting!
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Handling interactions ‘

—

(b) Decision tree with 6 leaf nodes.

(a) Decision boundary for tree with
6 leaf nodes.

Figure 3.28. Decision tree with 6 leaf nodes using X and Y as attributes. Splits have been numbered
from 1 o 5 in order of other occurrence in the tree.




“qandling interactions

+:1000 instances  Entropy (X) : 0.99
Entropy (Y) : 0.99
o : 1000 instances
Y
. ; m =,
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Decision Tree Based Classification
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| Advantages:
Relatively inexpensive to construct
Extremely fast at classifying unknown records

Easy to interpret for small-sized trees
Robust to noise (especially when methods to avoid overfitting are
employed)

Can easily handle redundant attributes
Can easily handle irrelevant attributes (unless the attributes are

interacting)

| Disadvantages: .
— Due to the greedy nature of splitting criterion, interacting attributes (that
her but not individually) may be

can distinguish between classes ioget
passed over in favor of other attributed that are less discriminating.

_ Each decision boundary involves only a single attribute




Yes No

Node N1 Node N2 Gini = 0.42

| N1]N2 N1 | N2
'c1| 3] 4 i Eaiya
c2 | 0|3 czl 142

Gini=0.342 Gini=0.416

Misclassification error for all three cases = 0.3 !



Misclassification Err

or vs Gini Index

= bt o = T ——
@ Parent
'~ @ ik e
Yes No 2 | 3
[Node N1 | Node N2 Gini = 0.42 |
ini(N1
3'1"'_( (3,)3)2_ 0B  |—1a N Gini(Children)
SHEREK =3/10* 0
=0 o M| :
> 1 (0] 3 +7/10 * 0.489
e | Gini=0.342 = 0.342

= 1 — (417)2 - (3/7)?
= 0.489

Gini improves but
error remains the
same!!




Computing Error of a Single Node
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Error(t) =1 — miaX[Pi(t)]

C1 0 p(C1)=0/6=0 P(C2)=6/6=1
C2 6 Error=1—max(0,1)=1—1=0
1 1 P(C1) = 1/6 P(C2) = 5/6
[ C2 5 Error = 1 — max (1/6, 5/6) = 1 — 5/6 = 1/6
B e ol P(C1) = 2/6 P(C2) = 4/6
o f 4 | Error=1-max (2/6,4/6)=1-4/6 =1/3
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rM/eéisure of Impurity: Classification Error
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, Classification error at a node t

Error(t) = 1= miax[pi (t)]

_ Maximum of 1 — 1/c when records are equally
distributed among all classes, implying the least

interesting situation
_ Minimum of 0 when all records belong to one class,
implying the most interesting situation
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Gain Ratio:

k

Split Info

Gain Ratio =
i=1

: it e e
Split Info = Z = logz —

n;

Parent Node, p is split into k partitions (children)
n; is number of records in child node i

C1

{Sports}

{Family,

Luxury

C1

Cc2

C2

Gini

|

10

0.163 Gini|  0.468 | Gini 0.167




Gain Ratio:

Gainsplit
Split Info

K
Gain Ratio = Split Info = —Zﬂlogzﬁ

Parent Node, p is split into k partitions (children)
n; is number of records in child node i

— Adjusts Information Gain by the entropy of the partitioning
(Split Info).
¢ Higher entropy partitioning (large number of small p
penalized!
_ Used in C4.5 algorithm
— Designed to overcome the disadvantage

artitions) is

of Information Gain

3ain Ratio



Problem wnth large number of part|t|ons
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e Node impurity measures tend to prefer splits that
result in large number of partitions, each being

small but pure

———

(/C’Ostomer \'
Bk

Gender g

— Customer ID has highest information gain
because entropy for all the children is zero




computing Information Gain After Splitting

et

. Information Gain:
k

N n;
Gaingye = Entropy(p) — Z;‘-Entropy(i)
i=1

Parent Node, p is split into k partitions (children)
n; is number of records in child node i

— Choose the split that achieves most reduction (maximizes
GAIN)

— Used in the ID3 and C4.5 decision tree algorithms

— Information gain is the mutual information between the class
variable and the splitting variable
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Computlng Entropy of a Smgle Node T

Entropy = Zpl(t)log2pl(t)

C1 0
C2 6
=
Brori ML
]2
2l 4

=0
P(C1)=0/6=0 P{(C2)=6/6=1
Entropy——OIogO-1Iog1=—0—0=0

P(C1) = 1/6 P(C2) = 5/6

Entropy = — (1/6) log, (1/6) — (5/6) log, (1/6) = 0.65

P(C1) = 2/6 P(C2) = 4/6
Entropy = - (2/6) log, (2/6) — (4/6) log, (4/6) = 0.92



