

Information Retrieval
ITIS401

Chapter-6
2021-2022

Dr Mohamed Abdeldaiem

The Physical Structure of Data

● Introduction to Physical Structures

● Record Structures and Their Effects

1-Basic Structures

2-Space-Time and Transaction Rate

● Basic Concepts of File Structure

● Organizational Methods

1-Sequential Files

2-Index-File Structures

3-Lists

4-Trees

Introduction to Physical Structures

● The physical organization of data in memory is a complex
and highly technical subject (Batory and Gotlieb, 1982;
Cardenas, 1985; Date, 1985; Frakes and Baeza-Yates,
1992; Korth and Silberschatz, 1986; Standish, 1980;
Tremblay and Sorenson, 1985; Wiederhold, 1987).

Record Structures and Their
Effects
● The main structural elements of a physical record are

essentially the same as those of a virtual record: the
individual data elements or attributes and their relationships.

● But at the physical level we have to know where the
elements are in memory and what is the actual basis for
their positioning.

● It is not enough merely to know that they exist or to know
what assumptions we are permitted to make about them.

Basic Structures

● The simplest record structure consists of a set of attribute
values, stored one after the other, each of a
predetermined, fixed size in number of bits or bytes.

● A record, if stored on disk, will normally be read into RAM
as a unit, or as part of a larger unit.

Record Structures and Their
Effects

● Variable-length record:

In this form, each attribute value carries with
it an explicit tag showing its length. The
name and address attributes vary widely in
length; date and telephone do not.

● Variable-length record:

Each field or attribute is of fixed length, but
there can be a variable number of
occurrences of the structure Transactions.
The number of bytes for each field is
explicitly given in the table and the number
of transactions is given (no_transactions).

Space-Time and Transaction Rate

● It takes time to find the length attributes, interpret them, and
access the location of the next element. The pointer or list
approach is one of many examples of a data structure in which
there is a trade-off between space and time.

● One facet of transaction rate is volatility, the rate at which a file
or database changes. A file of stock market transactions or of
positions of aircraft in an air traffic control system is going to
change frequently and in both cases it is essential that the
computer keep up with what can be very high volatility.

Basic Concepts of File Structure

● A primary consideration is the assumption that records will
be stored on disks, or some auxiliary memory that is larger
in capacity and slower in read/write speed than RAM.

● Access time is critical. We do not want the auxiliary
memory to be slower,but will tolerate it because of the high
cost of speed, and because with good organization and
program design, we can do without some of the speed.

Organizational Methods

● Each of the methods described below has variations on
how it is implemented by any given computer operating
system.

● It may be difficult to learn exactly how a favorite retrieval
or database system organizes records and it may not
matter until a file grows very large and has a high level of
activity

Sequential Files

● In a sequential file, records are stored contiguously and
are normally in order based on a sort key. New records are
added to a sequential file only by appending them to the
end of the file.

Index-File Structures

● Within RAM, a record can be accessed directly if its location is known.
With a disk memory, we can go directly to only the track or sector
(portion of a track) that contains the record.

● One method of finding the location in terms of track or sector is to create
an index , a separate file that tells where records are in the first file.

● For example, as shown in Fig-3, if we have a file, called the Main File, of
rather large records, using ssn as a sort key, we might create a second
file that consists only of ssn and the location of the corresponding record
in the main file.

Index-File Structures

● Inverted file or index:
To find a record with a given key, look first in
the inverted file and retrieve its record
number. Then look in the Main File for that
record. If the Inverted File can be stored in
RAM, then finding a Main File record
requires only one disk access.

● Use of multiple indexes: a separate inverted
file or index can be created for as many
attributes as desired. To search the main file
on an attribute for which there is no index
means a lengthy sequential search. If there
is an index, using it to retrieve record
number (r) means there need to be only one
accession of a record in the main file.

Lists

● One method of linking is to use
pointers between records.

● Fig-5 shows a sequential file, to
which, has been added a pointer to
the next record as an attribute of
each record. Next, in this case,
means the record with the next
higher value of the sort key.

Trees

● A tree structure is a set of records linked by two or more
pointers. Each points to succeeding records whose keys
are immediately “above” or “below” the current one.

● A directory points the search program to the location of the
initial record, which is the one having the median key
value, i.e., half the other keys

Information Retrieval
ITIS401

Chapter-6
Part-2

● Parsing of Data Elements

1-Phrase Parsing

2-Word Parsing

3-Word and Phrase Parsing
● Summary

Parsing of Data Elements

● One possible selection rule is to select every word in the text.
This has the advantage of mechanical simplicity, but results in
selection of many words that common sense suggests cannot
make a meaningful contribution to a good index, hence fills
memory with useless entries.

● There are two basic mechanical ways of parsing a syntactic
expression to create an index, by word or by phrase. There
can also be a combination of the two or, of course, no index at
all.

Phrase Parsing

● Phrase parsing means to treat the entirety of an attribute
value as a single phrase, or single entity for indexing
purposes. The ssn is of this type, because the entire value
of the attribute is used as the index element.

● An attribute like author is conventionally recognized as a
phrase, consisting typically of last name, a comma, a
space, first name, comma, space, and middle name.

Word Parsing

● This means to break up the content of an attribute value
into its individual words, possibly deleting “stop” words. In
this case, the original syntax may be lost within the index.

● This method is used with relatively large bodies of text, in
which inclusion of the entirety in an index would be
meaningless.

Word and Phrase Parsing

● Both word and phrase parsing might be used with such
attributes as subject headings, job titles, or names of
inventoried items. This allows those who know the correct
phrase to find it quickly.

● The form of parsing used to create indexes is of critical importance to the success of an
IRS. Economically, an error in judgment can result in memory being allocated to the
storage of useless data.

Figure-7: shows some examples
of the methods.

Summary

For any file, we have a choice between placing records in random order (or arrival
order) and putting them in order according to a key.

Random order means that the location of the record is not determined by the value of
an attribute in the record. Such a method is fast at placing the record in memory, but
may render searching impractically slow.

The file structures in use with most database software make use of combinations of
the various methods we have surveyed. Largely, this is because different files and
usage patterns place different demands on file structures. To avoid a different
structure for each file, we tend to compromise on some aspects in order to achieve
good performance on most of them.

End of Chapter-6

Any Question…?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

