

Information Retrieval
ITIS401
Chapter-5
2021-2022
Dr Mohamed Abdeldaiem

Lecture Overview

● Models of Virtual Data Structure

● Concept of Models of Data

● Basic Data Elements and Structures

1-Scalar Variables and Constants

2-Vector Variables

3-Structures

4-Arrays

5-Tuples

6-Relations

7-Text

Models of Virtual Data Structure

● A model of data is a particular type of structure or manner of
visualizing a data structure.

● One way of modeling gives consideration only to the constituent
elements and sequencing or placement of data elements within
other elements.

● A data structure is a collection of data elements or objects and
relationships among them.

● These relationships concern the physical layout of the data objects
or the semantic relations among them.

Concept of Models of Data

● A data structure begins with a single attribute and then

is built up by combining attributes into larger elements.

Scalar Variables and Constants

● A variable is a data element that is a representation of an
attribute and can take on differing values,i.e., whose value
can vary.

● A scalar variable is a single instance of a variable. This is
sometimes referred to as a field or item in computer
programming terms.

● The variable is used to represent an attribute, and
sometimes the words are used interchangeably.

Constants

● A constant, in computer terms, is the same as a variable,
but its value may not change once the program using it
has been compiled; hence, not during execution of the
program.

● If we were using the value of in a calculation, we would
store it as a constant (3.14159 . . .).

Vector Variables

● A vector is a variable that consists of a set of scalars, each
representing an instance of the same attribute, such as a
series of temperature readings for a hospital patient, or a
series of subject headings descriptive of a book in a library
catalog.

Structures

● The term structure can be used to denote a set of data
elements, not necessarily all of the same attribute type.

● The term is often used in the narrow as well as in the
broader sense in computer science.

● Context usually
● makes clear which is meant.

Arrays

● In mathematics, array simply means a rectangular
arrangement of data. A vector is a one-dimensional array. A
list of delinquent credit card numbers is one-dimensional.

Tuples

● The word tuple is a noun made out of a suffix, as in triple
or quadruple, and which in turn comes from ply, meaning
layer. A tuple is a one-layer structure.

● It represents one occurrence of a structure that may
contain one or more vectors or other structures.

Relations

● A relation, in brief, is the set of all the tuples that exist for a
given set of variables.

● In other words, a relation, in the database sense,
empirically defines the content or semantic relationships
among the variables constituting the tuples.

Text

● It is not clear how to classify a data element consisting of
natural-language text, such as an abstract in a bibliographic
record, the text of an article in a full text newspaper file, or
even the response to a questionnaire item that adds, at the
end of the list of choices: “Other (specify).” Text could be
considered a scalar string variable of very great length.

● More modern systems will allow searching within a text
variable for a particular sub string of characters, say the
occurrence of STEROID within a text assumed to be dealing
with athletics.

Text

● This is the most commonly used method in commercial
database operations today.

● Finally, we could treat a text as a structure, made up of a
series of words with a syntax relating them to each other
or to the entity they describe.

Figure -1

An inverted file

● As shown are: a short text, the list of words in order of
occurrence, with the sequential word number appended,
and the same word list sorted into alphabetic order.

● The occurrence order of a word within a file enables a user
to search for the phrase new nation rather than merely new
and nation occurring anywhere with respect to each other
because the location of the words can be seen to be
adjacent and in the desired order.

Chapter-5
Part -2

How to build an inverted file

Indexing and
Searching

Data Structures

indexing

Signature
Files

Suffix
Array

Inverted
Files

Searching

Random Sequential Binary

Inverted Files
 (Inverted Indexing)

Inverted Index is a Word-Oriented
Mechanism for Indexing a Text Collection in
order to speedup the Searching Task.

The Inverted File structure is composed of two

elements.

Inverted Files Structure

1- The Vocabulary :
 Is the set of all different Words in the Text.
For each such Word a List of all the Text positions

where the Word appears is Stored.

2- The Occurrences:
The set of those Lists is called the Occurrences.

Inverted index
• For each term t, we must store a list of all documents that

contain t.
– Identify each doc by a doc-ID, a document serial number

• Can we use fixed-size arrays for this?

What happens if the word Caesar is added to
document 14?

Sec. 1.2

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132

1 2 4 11 31 45 173

2 31

174

54 101

Tokenizer

Token stream Friends Romans Countrymen

Inverted index construction

Linguistic modules

Modified tokens friend roman countryman

Indexer

Inverted index

friend

roman

countryman

2 4
2

13 16
1

Documents to
be indexed

Friends, Romans, countrymen.

Sec. 1.2

Inverted index
• We need variable-size postings lists

– On disk, a continuous run of postings is normal and best

– In memory, can use linked lists or variable length arrays

• Some trade offs in size/ease of insertion

Dictionary Postings
Sorted by doc ID (more later on why).

PostingPosting

Sec. 1.2

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132
1 2 4 11 31 45 173

2 31

174

54 101

Initial stages of text processing
• Tokenization

– Cut character sequence into word tokens
• Deal with “John’s”, a state-of-the-art solution

• Normalization
– Map text and query term to same form

• You want U.S.A. and USA to match
• Stemming

– We may wish different forms of a root to match
• authorize, authorization

• Stop words
– We may omit very common words (or not)

• the, a, to, of

Indexer steps: Sort
• Sort by terms

– And then doc-ID

Core indexing step

Sec. 1.2

Indexer steps: Token sequence
• Sequence of (Modified token, Document ID)

pairs.

I did enact Julius
Caesar I was killed

i’ the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2

Sec. 1.2

Indexer steps: Dictionary &
Postings

• Multiple term entries
in a single document
are merged.

• Split into Dictionary
and Postings

• Doc. frequency
information is added.

Sec. 1.2

Where do we pay in storage?

Pointers

Terms
and

counts IR system implementation
•How do we index efficiently?
•How much storage do we
need?

Sec. 1.2

Lists of
docI-Ds

End of Chapter-5

Any Question…?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Inverted Files (Inverted Indexing)
	Inverted Files Structure
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

