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المعلوماتجامعة طرابلس ـ كلية تقنية

Design  and Analysis Algorithms
تصميم و تحليل خوارزميات

ITGS301

Lecture 6 : سادسةالمحاضرة ال

Master Method 

The Master Method is used for solving the following types of recurrence

T(n) = a T(n/b) + f(n)

Where a=> 1, b>1, and f is a function, f(n) > 0.

• n is the size of the problem.

• a is the number of subproblems in the recursion.

• n/b is the size of each subproblem. (Here it is assumed that all subproblems are essentially the 

same size.)

• f (n) is the sum of the work done outside the recursive calls, which includes the sum of dividing the 

problem and the sum of combining the solutions to the subproblems.
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Master Theorem:

It is possible to complete an asymptotic tight bound in these three cases:

Idea: compare f(n)  with nlog
b

a

Case 1: T(n) = Θ(nlog
b

a)           if f(n)< n log
b

a

Case 2: T(n) = Θ(nlog
b

a lg n)    if f(n) = nlog
b

a

Case 3: T(n) = Θ(f(n))             if f(n) > nlog
b

a

Example 1: 

Solve T(n) = 9T(n/3)+n using Master theorem;

a=9, b=3, f(n) =n
and nlog

b
a = nlog

3
9 = n2 now, f(n) < nlog

3
9

Therefore by case 1, T(n) = Θ(n2)

Example 2: 

Solve T(n) = T(2n/3)+1 using Master theorem; 
a=1, b=3/2, f(n) =1
and nlog

b
a= nlog

3/2
1 = n0 = 1

now, f(n)= Θ(nlog
b

a),
Therefore by case 2, 

T(n) = Θ(nlog
b

alg n) = Θ(lg n).
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The Simple Format of Master Theorem

Let T(n)=aT(n/b)+cnk.     with a, b, c, k are positive constants, and a≥1 and b>1,

Case 1: T(n) = O(nlog
b

a),        if a>bk. 
Case 2: T(n) = O(nk logn),    if a=bk.
Case 3 : T(n) = O(nk),            if a<bk.

if f(n) = Theta(g(n)) you can say f(n) = O(g(n)) too!
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Example 1:

Solve T(n) = 4T(n/2) + n3. Using the Master method.
a= 4, b=2, k=3    
bk = 23

a < bk so the case 3 is applied 
T(n) = O(n3).

Example 2:

Solve T(n) = 2T(n/2) + 1 Using the Master method.
a= 2, b=2, k=0    
bk = 20

6



4

a > bk so the case 2 is applied

T(n) = O(n ).

Example 3:

Solve T(n) = 9T(n/3) + n. Using the Master method.

a= 9, b=3, k=1    

bk = 31

a > bk so the case 1 is applied 

T(n) = O(nlog
b

a). = O(n2).
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Extended Version of Master Theorem

• Here, a >= 1, b > 1, k >= 0 and p is a real number.

F(n) = np logp n

Compare : logb a  with K
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Extended Version of Master Theorem

Case 1: if logb a   >   K

T(n)  = O ( n log
b

a   )

Case 2 : if logb a   =   K

If p > -1 then T(n)  = O ( n k logp+1 n)

If p = -1 then T(n)  = O ( n k log log n)

If p < -1 then T(n)  = O ( n k )

Case 3 : if logb a   <   K

If p >= 0  then T(n)  = O ( n k logp n)

If p < 0 then T(n)  = O ( n k )

Example3
T (n) = 2T (n/2) + n log n 

T (n) = 2T (n/2) + n log n =⇒ T (n) = n log2 n (Case 2)

T(n) = θ (nlog2n)

We compare the given recurrence relation with T(n) = aT(n/b) + θ (nklogpn).

Then, we have- a = 2    b = 2    k = 1   p = 1

Now, a = 2 and bk = 21 = 2.
Clearly, a = bk.
So, we follow case-02.

Since p = 1, so we have-
T(n) = θ (nlog

b
a.logp+1n)

T(n) = θ (nlog
2

2.log1+1n)

Thus,
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Master theorem limitations 

Can not be used : 

T(n) is not monotone , ex:  sin n.

T(n)  is not polynomial , ex:  2n

a is not constants ex: a = 2n

a < 1 
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Logarithmic rules

Recursion Tree Method

Idea: Convert the recurrence into a tree, use this tree to rewrite the function as
sum, and then use techniques to solve recurrence.

The recursion tree generated by T(n) = a T(n/b) + f(n).

Where
a is number of sub problems that are solved recursively
b is size of each sub problem relative to n
n/b is the size of the input to recursive call.
F(n) is the cost (time) of dividing and recombining the sub problem.
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Each node represents the cost of a single sub problem.

Sum up the costs with each level to get level cost.

Costs with each level = ai f(n/bi)

for ( i = 0,1,2,3,…,logb n-1)

where ai is the number of subtrees (or nodes at level i).

but at the last level T(1) = 1

f(1)= 1.
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n/bi = 1  n = bi i = logb n 
so at last level when T(1) =1
cost = ai f(n/bi)  

= ai . f(1)
= ai . (1)

when i = logb n  ai = alog
b

n

alogb n  = nlogb a

= ai .  (1)
=  (1). alog

b
n 

=  (1). nlog
b

a

=  T(n) = θ (nlog
b

a ).
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the sum up all the level cost to get total cost.
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Example: 
solve T(n) = 4 T(n/2) + n using recursion tree.

answer

19

20



11


