il sheall 25 206 -) dacala

Design and Analysis Algorithms

Slea jlss Sl 9 ppasad
ITGS301

Lecture 6 : dwslud! § 5Ll

Master Method
I

The Master Method is used for solving the following types of recurrence
T(n) =a T(n/b) + f(n)

Where a=> 1, b>1, and f is a function, f(n) > 0.

n is the size of the problem.

a is the number of subproblems in the recursion.

n/b is the size of each subproblem. (Here it is assumed that all subproblems are essentially the
same size.)

f(n) is the sum of the work done outside the recursive calls, which includes the sum of dividing the
problem and the sum of combining the solutions to the subproblems.

Master Theorem:
I

It is possible to complete an asymptotic tight bound in these three cases:

Idea: compare f(n) with n'°g,2

Case 1: T(n) = ©(n'e8,?) if f(n)< n 'o8,2
Case 2: T(n) = O(n'°8,2Ign) if f(n) = nlos,?
Case 3: T(n) = O(f(n)) if f(n) > n'og, 2

Example 1:
Solve T(n) = 9T(n/3)+n using Master theorem;

a=9, b=3, f(n) =n
and n'8,@ = n'%8.9 = n2 now, f(n) < n'°e,?
Therefore by case 1, T(n) = ©(n2)

Example 2:

Solve T(n) = T(2n/3)+1 using Master theorem;
a=1, b=3/2, f(n) =1
and nlogba= nlog3/21: n=1
now, f(n)= ©(n'°g.3),
Therefore by case 2,
T(n) = ©(n'°¢,2lg n) = O(Ig n).

The Simple Format of Master Theorem

Let T(n)=aT(n/b)+cn*. with g, b, ¢, k are positive constants, and a>1 and b>1,

Case 1:T(n) = O(n'*¢3), if a>bk.
Case 2: T(n) = O(n* logn), if a=bk.
Case 3 : T(n) = O(n¥), if a<bk.

fln) =6(n)= f(n) =O(n)

if f(n) = Theta(g(n)) you can say f(n) = O(g(n)) too!

Example 1:

Solve T(n) = 4T(n/2) + n3. Using the Master method.
a=4, b=2, k=3
bk=23

a < b* so the case 3 is applied
T(n) =0(n3).

Example 2:

-.a> bk sothe case 2 is applied

Example 3:

Solve T(n) = 9T(n/3) + n. Using the Master method.
a=9, b=3, k=1
bk=31

a > bk so the case 1 is applied
T(n) = O(n'°g.3). = O(n?).

Extended Version of Master Theorem

T{n)=aT(%) +8(n"log n)

=nP p
Master's Theorem F(n) = n® log? n

* Here,a>=1,b>1,k>=0and pis areal number.

Compare : log, a with K

Extended Version of Master Theorem

Case 1:iflog,a > K
T(n) =0 (n'e)
Case2:iflog,a = K
If p>-1thenT(n) =0 (nk logP*n)
Ifp=-1thenT(n) =0 (n* log logn)
Ifp<-1thenT(n) =0 (nk)
Case3:iflog,a < K
If p>=0 thenT(n) =0 (n* logPn)
Ifp<0OthenT(n) =0 (nk)

Example3

T(n)=2T (n/2)+nlogn

We compare the given recurrence relation with T(n) = aT(n/b) + 6 (nklogPn).

Then, we have-a=2 b=2 k=1 p=1

Now,a=2and bk=21=2.
Clearly, a = bk,
So, we follow case-02.

Since p = 1, so we have-
T(n) = 6 (n'°g,2.logP*n)

T(n) = 6 (n'&,2 log!*n)

Thus, T(n)=2T(n/2)+nlogn==T(n)=nlog2n (Case 2)

T(n) = 6 (nlog?n)

Inadmissible equations

The following equations cannot be solved using the master theorem:

T
. T(n) = 2'T (5) +
a is not a constant; the number of subproblems should be fixed

« T(n) = 2T (%) +

!
logn
non-polynomial difference between f(n) and 7% 4 (see below; extended version applies)
1
« T(n) = 0.5T (E) +n
a < 1 cannot have less than one sub problem
n
« T(n) = 64T (E) —n?logn
f(n). which is the combination time, is not positive
mn
2
case 3 but regularity violation.

« T(n) = T() +n(2 — cosn)

Master theorem limitations

Can not be used :

T(n) is not monotone, ex: sin n.
T(n) is not polynomial, ex: 2"
a is not constants ex: a = 2"

a<l

Logarithmic rules

log,(bc) = log,(b)+ log,(c)
log,, (b°) clog,(b)
log,(1/5) = ~—log, (D)
log, (1) = 0
log,(a) 1
log, (a”) T
log, /,(b)
log (b) logy(c)

log, (a)

1Ogam (an)

Recursion Tree Method
I
Idea: Convert the recurrence into a tree, use this tree to rewrite the function as

sum, and then use techniques to solve recurrence.
The recursion tree generated by T(n) = a T(n/b) + f(n).

Where

a is number of sub problems that are solved recursively

b is size of each sub problem relative to n

n/b is the size of the input to recursive call.

F(n) is the cost (time) of dividing and recombining the sub problem.

)
/§L>\
Jnfb) Jnfb) . amaf(n/bh)

A

F /b /bhyf nfBYy Fln/b™fafb2y-f /b FnfbAf(nfbPyf (n /By wuine a® £ (n/b7)

o o o fd

E-)(l) (~)(Il) @(Il) (-)tl) (')(‘1) (-)(‘l) (-)(Il) (-)él) (-)(1) (-)fl) (-)&]) (-)(d) (-)(l)---‘n»- B (nloz)

plogpa

Each node represents the cost of a single sub problem.
Sum up the costs with each level to get level cost.

Costs with each level = a' f(n/b))

for(i=0,1,2,3,....logb n-1)

where ai is the number of subtrees (or nodes at level i).
but at the last level T(1)=1

n/b,=1-> n=b,2>i=log, n
so at last level when T(1) =1
cost = a' f(n/b;)

=a'.f(1)

=a. (1)

i = i— qlog n
wheni=log,n = a'=2al%,
alogbn — nlogba

=a. (1)
= (1). alg,"
— (1) nlogb a
T(n) =6 (n'os, 2).

the sum up all the level cost to get total cost.

logy, m—1
Total: ©(n'%*) + Y a’ f(n/b’)
=0

Example:
solve T(n) =4 T(n/2) + n using recursion tree.

answer

n/2

n/2
// \\ e e 160 = 4
n,rzg L(n/4) n

n/22 n/22 n/f2?

em e em em

T(n) = [2& > - 1/2-1].n+n?
T(n)= [2'8,"—1/2-1].n+n?

T(n) = [n'°&’ -1/2-1].n+ n?

T(n)= [n— 1]jn +n?

T(n) =n?—n +n?
T(n) =2n’—n

.. Total cost = ©(n?).

10

11

