
1

المعلوماتجامعة طرابلس ـ كلية تقنية

Design and Analysis Algorithms
تصميم و تحليل خوارزميات

ITGS301

Lecture 4 : المحاضرة الرابعة

2024خريف

The Problem Of Sorting

2

• Sorting is one of the most common data processing applications ,

the through which data are arranged according to their values.

• If data were not ordered , we would spend hours trying to find a

single piece of information.

Sorting

• Data may be sorted in either ascending sequence or

descending sequence . and if the order of the sort is

not specified its assumed to be ascending..

3

Example: Sorting Playing Cards

Let us start with a playing card example.

Imagine being handed one card at a time. You take the first card in your

hand. Then you sort the second card to the left or right of it. The third card is

placed to the left, in between or to the right, depending on its size. And also,

all the following cards are placed in the right position.

Insertion Sort

• In the insertion sort , the list is divided in two parts : sorted and

unsorted.

• In each pass the first element of the unsorted sub list is transferred

to the sorted sub list by inserting it at appropriate place.

• If we have a list of n elements , it will take at most n-1 passes to sort

the data.

4

Insertion Sort Algorithm

Step 1

First, we divide the array into a

left, sorted part, and a right,

unsorted part. The sorted part

already contains the first element

at the beginning, because an

array with a single element can

always be considered sorted.

Let's move from the card example to the computer algorithm. Let us assume

we have an array with the elements [6, 2, 4, 9, 3, 7]. This array should be

sorted with Insertion Sort in ascending order.

Step 2

Then we look at the first element of the unsorted area and check where, in the

sorted area, it needs to be inserted by comparing it with its left neighbor.

In the example, the 2 is smaller than the 6, so it belongs to its left. In order to

make room, we move the 6 one position to the right and then place the 2 on

the empty field. Then we move the border between sorted and unsorted area

one step to the right:

5

Step 3

We look again at the first element of the unsorted area, the 4. It is smaller than

the 6, but not smaller than the 2 and, therefore, belongs between the 2 and the 6.

So we move the 6 again one position to the right and place the 4 on the vacant

field:

Step 4

The next element to be sorted is the 9, which is larger than its left neighbor 6, and

thus larger than all elements in the sorted area. Therefore, it is already in the correct

position, so we do not need to shift any element in this step:

6

Step 5

The next element is the 3, which is smaller than the 9, the 6 and the 4, but

greater than the 2. So we move the 9, 6 and 4 one position to the right and

then put the 3 where the 4 was before:

Step 6

That leaves the 7 – it is smaller than the 9, but larger than the 6, so we move

the 9 one field to the right and place the 7 on the vacant position:

7

InsertionSort(A, n)
{
For i = 2 to n {

Key = A[i]
j= i - 1

While (j > 0) and (A[j] > key)
{
A[j+1] = A[j]
j = j – 1

}

A[j+1] = key
}

8 2 4 1 3

8

8 2 4 1 3

Example 1 :

8 2 4 1 3

8 8 4 1 3

key=2

key=2

2 8 4 1 3

Sorted UnSorted

2 8 4 1 3

2 8 8 1 3

2 4 8 1 3
key=1

9

2 4 8 8 3

2 4 4 8 3

2 2 4 8 3
key=1

key=1

1 2 4 8 3

key=3

1 2 4 8 8

1 2 4 4 8

1 2 3 4 8

Sorted

10

Time Complexity

where t is the number of while tests

Number of times inner-loop is executed depends on
the input

The worst case scenario for Insertion Sort is if the array is already sorted, but with the
highest values first. That is because in such a scenario, every new value must "move
through" the whole sorted part of the array.

These are the operations that are done by the Insertion Sort algorithm for the first
elements:

•The 1st value is already in the correct position.

•The 2nd value must be compared and moved past the 1st value.

•The 3rd value must be compared and moved past two values.

•The 3rd value must be compared and moved past three values.

•And so on..

If we continue this pattern, we get the total number of operations for n values:

1+2+3+...+(n−1)

https://www.w3schools.com/dsa/dsa_algo_insertionsort.php

11

Time Complexity
Statement Time Best case Worst case

For i = 2 to n { n n n

Key = A[i] n-1 n-1 n-1

j= i - 1 n-1 n-1 n-1

While (j > 0) and (A[j] > key)

෍

𝑖=2

𝑛

𝑡𝑖
n-1 n(n+1)/2 -1

A[j+1] = A[j]

෍

𝑖=2

𝑛

𝑡𝑖 − 1
σ𝑖=2
𝑛 1 − 1 = 0 n(n-1)/2

j = j – 1

෍

𝑖=2

𝑛

𝑡𝑖 − 1
σ𝑖=2
𝑛 1 − 1 = 0 n(n-1)/2

A[j+1] = key n-1 n-1 n-1

Best case running time:

T(n) = n + (n-1) + (n-1) + (n-1) + 0 + 0 + (n-1)

= 5n – 4

T(n) = O (n)

Worst case running time:

T(n) = n + (n-1) + (n-1) + (n(n+1)/2 – 1) + n(n-1)/n + n(n-1)/2 + (n-1)

T(n) = O (n2)

12

Summary

Insertion Sort is an easy-to-implement, stable sorting algorithm with time

complexity of O(n²) in the average and worst case, and O(n) in the best case.

•It could be used in sorting small lists.

•It could be used in sorting "almost sorted" lists.

•It could be used to sort smaller sub problem in Quick Sort.

