
1

المعلوماتجامعة طرابلس ـ كلية تقنية

Design and Analysis Algorithms
تصميم و تحليل خوارزميات

ITGS301

Lecture 3 : المحاضرة الثالثة

2024خريف

LIMIT TECHNIQUE

FOR COMPARING GROWTH RATES

f grows faster than g as x ∞

f grows slower than g as x ∞

f and g are growth at the same rate

2

Examples:

3

Examples:

Analysis of Time Complexity

(1) Determine the input size (𝑛)

(2) Determine the basic operations

(3) Let 𝒄(𝒏) be the maximum count of the basic operations as function of 𝑛

(4) Let 𝒅(𝒏) be the minimum count of the basic operations as function of 𝑛

(5) The upper bound of the time complexity is Ο(𝑐(𝑛))

(6) The lower bound of the time complexity is Ω(𝑑(𝑛))

(7) If O(𝑐(𝑛)) = Ω(𝑑(𝑛)), then the exact bound of the time complexity is Θ(𝑐(𝑛))

4

Main Rules of Asymptotic Notations

1. Drop constant factors

✓ 6𝑛 − 3 = O(𝑛)

✓ 2𝑛2 + 1000 = O(𝑛2)

✓ 4𝑛 log 𝑛 + 10 = O(𝑛 log 𝑛)

2. Drop lower-order terms

✓ 𝑛3 + 𝑛2 + 𝑛 + 1 = O(𝑛3)

✓ 𝑛 + log 𝑛 = O(𝑛)

✓ 𝑛 log 𝑛 + 𝑛 = O(𝑛 log 𝑛)

✓ log 𝑛 + log log 𝑛 = O(log 𝑛)

Big Oh Rules:

１．Ignore constant factors.

２．IF we have 2 functions f1(n) , f2(n) and f1(n) = O(g1(n)) , f2(n) = O(g2(n))

then

f1(n) * f2(n) = O (g1(n) * g2(n)).

Ex: f1(n) = O(n2) and f2(n) = O(n)

f1(n) * f2(n) = O(n2 * n)

= O(n3)

5

3. if we have 2 functions f1(n) , f2(n) and f1(n) = O(g1(n)) ,

f2(n) = O(g2(n)) then

f1(n) + f2(n) = Max(g1(n) , g2(n))

= O (g1(n) + g2(n)).

Ex: f1(n) = O(n2) and f2(n) = O(n3)

f1(n) + f2(n) = Max(O(n2) , O(n3))

= O(n2) + O(n3)

= O(n3).

Counting the Number of Operations

1. The running time equals the number of primitive operations (steps) executed before

termination.

2. Each operation takes a certain time.

❑Analysis of Loops:

o Simple Loops: The running time of a for loop is at most the running time of the
statements inside the loop times the number of iterations.

Analysis of Time Complexity

6

sum = 0;

for(i = 0; i < n; i++)

sum = sum + i;

Analyzing : sum = 0; excuted only 1 time :: O(1)

for(i = 0; i < n; i++)
// i = 0; executed only once: O(1)

// i < n; n + 1 times O(n)
// i++ n times O(n)

Example 1 : O(n) Loops

total time of the loop heading:
O(1) + O(n) + O(n) = O(n)

sum = sum + i; // executed n times, O(n)

The time required for this algorithm equals: O(1) + O(n) + O(n) = O(n). 

Example 2 O(n) Loops

int sum = 0; // 1 time
int i = 0; // 1 time
while (i < n) { // n+1 times

sum++; // n times
i++; // n times

}

int sum = 0;
int i = 0;
while (i < n) {

sum++;
i++;

}

Hence, T(n) = 3*n+3 = O(n)

Analyzing :

7

Example 3 O(1) Loops

A loop or recursion that runs a constant number of times is considered as O(1).

Int sum = 0;

for (int i = 1; i <= 10; i++) {

sum = sum + a[i]

}

o Nested Loop:

sum = 0;
for(i = 0; i < n; i++)

for(j = 0; j < n; j++)

sum++;

The running time = O(1) + O(n*n) + O(n)
=O(1) +O(n2) + O(n)
= O(n2)

Time complexity of nested loops is equal to the number of times the innermost statement
is executed.

Example 4 O(n2) Loops

8

o Consecutive program fragments

The total running time is the maximum of the running time of the individual fragments

sum = 0;
for(i = 0; i < n; i++)

sum = sum + i;

sum = 0;
for(i = 0; i < n; i++)

for(j = 0; j < 2n; j++)
sum++;

Example 5 O(n2) Loops

o If statement

IF Condition
S1;

else
S2;

The running time is the maximum of the running times of S1 and S2.

9

Exercises

What is time complexity of following ?

Exercises

4. Val=0
for (int i = 1; i < n; i = i*2)

Val= Val + i // some O(1) operation

10

Exercises

What is time complexity of fun()?

Worst and Best Case Analysis

Worst Case Analysis

✓ In worst case analysis, we calculate upper bound on running time of an
algorithm.

✓ We must know the case that causes maximum number of operations to be
executed.

11

Example 6: Worst Case Analysis of Linear Search

✓ For Linear Search, the worst case happens when the element to be searched (𝑥) is not
present in the array.

✓ In this case, the algorithm compares it with all the elements of A one by one.

✓ Therefore, worst case time complexity of linear search would be O(𝑛).

Worst and Best Case Analysis

Best Case Analysis

✓ In best case analysis, we calculate lower bound on running time of an
algorithm.

✓ We must know the case that causes minimum number of operations to be
executed.

12

Example 7: Best Case Analysis of Linear Search

✓ In the linear search algorithm, the best case occurs when 𝑥 is present at the first
location.

✓ The number of operations in the best case is constant (not dependent on 𝑛).

✓ So, time complexity in the best case would be Ω(1)

13

