
المعلوماتجامعة طرابلس ـ كلية تقنية

Design and Analysis Algorithms
تصميم و تحليل خوارزميات

ITGS301

Lecture 2 : المحاضرة الثانية

2024خريف

Contents

Common order-of-growth classifications

Asymptotic Notation

• Big Oh , Omega , Theta

Asymptotic Analysis

Asymptotic notations are the mathematical notations used to describe the

running time of an algorithm when the input tends towards a particular value or a

limiting value.

Asymptotic analysis is an analysis of algorithms that focuses on

▪ Analyzing problems of large input size

▪ Consider only the leading term of the formula

▪ Ignore the coefficient of the leading term
There are mainly three asymptotic notations:

• Big-O notation

• Omega notation

• Theta notation

Why Choose Leading Term?

Lower order terms contribute lesser to the overall cost as the input grows larger

Example

Hence, lower order terms can be ignored

These terms can be obtained through asymptotic analysis

Examples: Leading Terms

The fundamental reason is that for large values of n, any function that contains an n2 term
will grow faster than a function whose leading term is n. The leading term is the term with
the highest exponent.

we expect an algorithm with a smaller leading term to be a better algorithm for large
problems, but for smaller problems, there may be a crossover point where another
algorithm is better.

Order of growth

Order of growth

Suppose you have analyzed two algorithms and expressed their run times in terms of the

size of the input: Algorithm A takes 100 n + 1 steps to solve a problem with size n;

Algorithm B takes n2 + n + 1 steps.

The following table shows the run time of these algorithms for different problem sizes:

Input Run time of Run time of

size Algorithm A Algorithm B

10 1 001 111

100 10 001 10 101

1 000 100 001 1 001 001

10 000 1 000 001 > 1010

What is Order of Growth?

An order of growth is a set of functions whose asymptotic growth behavior is
considered equivalent. For example, 2n, 100n and n + 1 belong to the same order
of growth, which is written O(n) in Big-Oh notation and often
called linear because every function in the set grows linearly with n.

How the time/space complexity of an algorithm grows/changes with the input size

معدل تغير وقت أو مساحة الخوارزمية مع تغير حجم المدخلات

حجم المدخلات

نوع معدل النمومعدل النموn…123وقت الخوارزمية

(Constant)ثابت 222…21(A)وقت الخوارزمية

(Linear)خطي 246…2nn(B)وقت الخوارزمية

أسي 248…2ncn(K)وقت الخوارزمية
(Exponential)

What is Order of Growth?

A list of classes of functions that are commonly encountered when analyzing algorithms.

constant O(1)

logarithmic O(log2 N)

Linear O(N)

N log n O(n log2 N)

Quadratic O(N2)

Cubic O(N3)

Exponential O(2n)

Factorial O(n!)

Orders of Common Functions

Order of growth

The following table shows some of the orders of growth that appear most
commonly in algorithmic analysis.
For the logarithmic terms, the base of the logarithm doesn’t matter; changing
bases is the equivalent of multiplying by a constant, which doesn’t change the
order of growth.
Similarly, all exponential functions belong to the same order of growth
regardless of the base of the exponent.
Exponential functions grow very quickly, so exponential algorithms are only

useful for small problems.

Order of growth

Name Function

Constant 𝑐
Double Logarithmic log log 𝑛
Logarithmic log 𝑛
Fractional Power 𝑛𝑐 , 0 < 𝑐 < 1
Linear 𝑂(𝑛)
Loglinear 𝑛 log 𝑛 and log 𝑛!
Quadratic 𝑛2
Polynomial 𝑛𝑐 , 𝑐 > 1
Exponential 𝑐𝑛, 𝑐 > 1
Factorial 𝑛!
Super Exponential 𝑛𝑛

Common order-of-growth classifications Running time complexity

Exercise 1

Arrange the functions in increasing asymptotic order

(a) 𝑛 Τ1 3

(b) 𝑒𝑛

(c) 𝑛 Τ7 4

(d) 𝑛 log𝑛
(e)1.0000001𝑛

n n log2(n) n^(7/4)

2 2 3

4 8 11

8 24 38

16 64 128

32 160 431

64 384 1448

O-notation (Big-Oh)

• Big O Notation (Big-Oh)

Definition: Let f(n) , g(n) be functions, we say f(n) is of order g(n) if there

is a constant c>0 such that n >= n0

f(n) = O(g(n))

if f(n) <= C.g(n) for all c, n0 > 0 , n > n0.

g(n) is asymptotic upper bound for f(n)

Note That:

▪ we use O-notation to provide an upper bound on the time for any

input.

▪ the worst case running time of an algorithm is upper bound on the

time for any input.

▪ the worst case running time gives us guarantee that the algorithm

will never take any longer.

Example #1:

let f(n) = n+ 5 and g(n) = n show that f(n) = O(g(n)) choose c=6.

answer:
f(n) = O(g(n)) if f(n) <= c.g(n) for c,n0 > 0

n+5 <= c.n
n+5 <= 6n

The condition has been proofed for any n0 > 0

f(n) = O(n)

Prove that the running time of f(n) = 3n2 + 10n is O(n2).

Proof:
by big oh definition

f(n) = O(n2) if f(n) <= C.g(n) for c,n0 > 0

3n2 + 10n <= c.n2

3 + 10/n <= c
when n0 => 1 then

3+ 10 <= c
13 <= c

The condition has been proofed when c = 13 when n=1

Example #2

Theory

if f(n) = amnm + am-1nm-1 + … + a1n + a0 then f(n)
= O (nm)

when a function is sum of several terms , its order of growth is
determined by the fastest growth term.

Proof

f(n) = amnm + am-1nm-1 + … + a1n + a0

f(n) = O(nm) if f(n) <= c.g(n) for c,n0 > 0

| amnm + am-1nm-1 + … + a1n + a0 | <= c.nm

(| amnm + am-1nm-1 + … + a1n + a0 |) / nm <= c

when n0 = 1

| am + am-1 + … + a1 + a0 | <= c

.: f(n) = O (nm) when c >= | am + am-1 + … + a1 + a0 |

The condition has been proofed.

Ω Notation

Given two functions 𝑓(𝑛) and 𝑔(𝑛), we say that 𝑓(𝑛)
is Ω(𝑔(𝑛)) if there exists positive constants 𝑛0 and
and 𝑐 such that:

𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Ω Notation (Big Omega)

Example #1

Example #2

Θ Notation

Given two functions 𝑓(𝑛) and 𝑔(𝑛), we say that 𝑓(𝑛)
is Θ(𝑔(𝑛)) if there exists positive constants 𝑛0, 𝑐1 and
𝑐2 such that:

∀ 𝑛 ≥ 𝑛0, 𝑐1 𝑔(𝑛) ≤ 𝑓 𝑛 ≤ 𝑐2 𝑔(𝑛)

Θ Notation (Big Theta)

Example #1

Big O (O()) describes the upper bound of the complexity.

Omega (Ω()) describes the lower bound of the complexity.

Theta (Θ()) describes the exact bound of the complexity.

Θ (g(n))
Ω (g(n))

O (g(n))

Write True or False :

T(n) = 5n3 + 2n2 + 4 log n

Exercise 2

1. T(n)  O (n4)
2. T(n)  O (n2)
3. T(n)   (n3)
4. T(n)  O (log n)
5. T(n)   (n4)
6. T(n)  Ω (n2)

The End .

