Cila glaall 488 LS il la Aadls

Design and Analysis Algorithms
Sleajylod el g prosas

ITGS301

Lecture 2 :45L0 8 sl

Contents

Common order-of-growth classifications

Asymptotic Notation

* Big Oh, Omega, Theta

Asymptotic Analysis

Asymptotic notations are the mathematical notations used to describethe
running time of an algorithm when the input tends towards a particular value or a
limiting value.

Asymptotic analysis is an analysis of algorithms that focuses on

= Analyzing problems of large input size
= Consider only the leading term of the formula

= |gnore the coefficient of the leading term
There are mainly three asymptotic notations:

* Big-O notation
* Omega notation
* Theta notation

Why Choose Leading Term?

L]
Lower order terms contribute lesser to the overall cost as the input grows larger

Example

= f(n)=2n%?+ 100n

= f{1000) = 2(1000)? + 100(1000)
= 2,000,000 + 100,000

= f(100000) = 2(100000)2 + 100(100000)
= 20,000,000,000 + 10,000,000
Hence, lower order terms can be ignored

Lower-Order Terms and Constant Factors

 The growth rate is not Lﬁ |
affected by s

— lower-ordertermsor 1E+5
1E+13

1
~---Quadratic

Examples: Leading Terms

— constantfactors 1EH1 | P
1 — 1
« Examples al _ =an)="%n+4

Quadratic function:) s Leading term: 2 n
— 107+ 10%n

105 - * = b(n) = 240n + 0.001n2

Linear function: = Leading term: 0.001n?
— 10?1+ 10 o

- 10 « o(n) = nlg(n) +1g(n) + n1g(Ig(n))

Different linear function:

- = Leading term: nIg(n)
- n
— 21+10 _= = Note that Ig(n) = log,(n)

= .

These terms can be obtained through asymptotic analysis

Order of growth

The fundamental reason is that for large values of n, any function that contains an 7* term
will grow faster than a function whose leading term is n. The leading term is the term with
the highest exponent.

we expect an algorithm with a smaller leading term to be a better algorithm for large

problems, but for smaller problems, there may be a crossover point where another
algorithm is better.

Order of growth

Suppose you have analyzed two algorithms and expressed their run times in terms of the
size of the input: Algorithm A takes 100 77+ 1 steps to solve a problem with size 7,
Algorithm B takes /7 + n+ 1 steps.

The following table shows the run time of these algorithms for different problem sizes:

Input

Run time of

Run time of

size

Algorithm A

Algorithm B

10

1001

111

100

10 001

10101

1 000

100 001

1001 001

10 000

1 000 001

> 1010

LEl What is Order of Growth?

An order of growth is a set of functions whose asymptotic growth behavior is
considered equivalent. For example, 2n, 100nand n+ 1 belong to the same order
of growth, which is written O(n) in Big-Oh notation and often

called linear because every function in the set grows linearly with n.

How the time/space complexity of an algorithm grows/changes with the input size

) B PN

sadll Jara £ 5 w| 3 2

daa) A0 g

(Constant) <

(A) Ayl Al i

(Linear) ba

(B) dxe) sl

i
(Exponential)

(K) 4)) g

M- dall eox> 35 g dua))lgadl Il 9 B9 s Joan

LEl What is Order of Growth?

Algorithm 30 Minimum and Maximum Elements Algorithm 29 Minimum and Maximum Elements

Input: An array A[l..n] of n elements. Input: An array A[l..n] of n elements sorted in ascending order.
Output: The minimum and maximum elements in A Output: The minimum and maximum elements in A

1: min + A[l] 1: min < A[l]

2: maz + All] 2: max + Aln]

3: for i <~ 2 ton do 3: return (min, maz)
if (A[i] < min) then

min < Ali
end if
if (A[i] > maz) then
: maz < Ali
9: end if
10: end for
11: return (min, mazx)

B Orders of Common Functions

A list of classes of functions that are commonly encountered when analyzing algorithms.

constant 0O(1)
logarithmic O(log, N)

Linear O(N) [OHfL "L Oy Wil
Nlogn O(n log, N)

Quadratic O(N?)
Cubic O(N3)
Exponential 0o(2")

Factorial O(n!)

O(1) < O(log n) < O(n) < O(nlogn) < O(n*) < O(n’) < O(2")

Order of growth

The following table shows some of the orders of growth that appear most
commonly in algorithmic analysis.

For the logarithmic terms, the base of the logarithm doesn’t matter; changing
bases is the equivalent of multiplying by a constant, which doesn’t change the
order of growth.

Similarly, all exponential functions belong to the same order of growth
regardless of the base of the exponent.

Exponential functions grow very quickly, so exponential algorithms are only
useful for small problems.

|l~* Order of growth

Name Function

Constant C

Double Logarithmic loglogn

Logarithmic lOg n
Fractional Power Tlc, 0<c<l1
Linear O(n)
Loglinear n lognand log n!
Quadratic n2
Polynomial nc, c>1

Exponential n
p ct,c>1
Factorial

Super Exponential

Common order-of-growth classifications Running time complexity

constant | logarithmic quadratic exponential

0O(1) | O(log n) o(n?) oQ2")
1 1
4 8
16 64

64 512 256
4,096 65536
32,768 (4.294.967.296

262.144| 1.84x10!°

Time to complete (in operations)

Size of input data

Exercise 1

Arrange the functions in increasing asymptotic order

(a) n1/3

(b) "

(c) n7/4

(d)n logn
(e)1.0000001™

O-notation (Big-Oh)

e Big O Notation (Big-Oh)
Definition: Let f(n) , g(n) be functions, we say f(n) is of order g(n) if there

is a constant ¢>0 such that n >=n

f(n) = O(g(n))
if f(n) <= C.g(n) forallc,ny>0, n>n,.

g(n) is asymptotic upper bound for f(n) " fin) = Olgln)

Note That:
L

= we use O-notation to provide an upper bound on the time for any
input.

" the worst case running time of an algorithm is upper bound on the
time for any input.

= the worst case running time gives us guarantee that the algorithm

will never take any longer.

Example #1:

L
let f(n) = n+ 5 and g(n) = n show that f(n) = O(g(n)) choose c=6.

answer:
O(g(n)) if f(n)<=c.g(n)forc,n,>0
n+5 <=c.n
n+5 <= 6n
The condition has been proofed for any n, > 0

Example #2

Prove that the running time of f(n) = 3n? + 10n is O(n?).

by big oh definition
f(n) = O(n?) if f(n) <=C.g(n) forc,n, >0

3n?+ 10n <=c.n?
3+10/n <=c¢
when n, => 1 then
3+ 10 <=c
13 <=¢
The condition has been proofed when c = 13 when n=1

Theory

if fin)=a_nm +a, N1 +..+a,n+a, then f(n)
=0(n")

when a function is sum of several terms, its order of growth is
determined by the fastest growth term.

Proof

— m m-1
f(n)=a,n™ +a,N™+..+a;n+a,

f(n)=0(n™) if f(n)<=rc.g(n) forc,n, >0

m m-1 — m
| a,Nn™ +a, N+ . +an+a, | <=cn

(|a,n™+a nN™+. . +an+a,]|)/nmM<=c
whenny=1

. +a_.+..+a,+a <=C
m m-1 1 0

2f(n)=0(n™)when c>= |a, +a,,;+..+3;+3,

The condiition has been proofed.

Q) Notation (Big Omega)

() Notation

Given two functions f(n) and g(n), we say that f(n)
is Q(g(n)) if there exists positive constants n0 and
and ¢ such that:

fn)=2cgn) vn=n,

f(n) = Q(g(n))

Example #1

show that f(n) = 5n?i1s Q(n?) when ¢=5 and n,=1.

answer:
f(n) =Q (g(n)) 1if f(n)=>c.g(n) for ¢,n,> 0

5n? => ¢.n?
5n? => 5n?
when n,=1
5=>5
The condition 1s true.

Example #2

show that f(n) = n’i1s Q(n) when ¢= 3

answer:
f(n)=Q (g(n)) 1if f(n)=>c.g(n) forc,n,>0
n® =>c.n
n’>=>3n
when ¢= 3
32== 3%*3

Then f(n) = Q0)when no= 3

© Notation (Big Theta)

© Notation

Given two functions f(n) and g(n), we say that f(n)
is @(g(n)) if there exists positive constants n0, c1 and
c2 such that:

Vnz=ngc g(n) Sf(n) < C g(n)

f(n) = @(g(n))

Example #1

let f(n) = 3n+2 , g(n) = n show that f(n) = ®(g(n)) when
c,=3.,¢c,=4.

dIISWCT.

f(n) =O(gn)) 1f C,.g(n)<=1n)<=C, .gn)
3n<=3nt+2 <=4n
when n=2
6 <=8 <=8
the condition has been proofed when c¢=3,¢c=4 for all n>1

() = O(gm)
f(n) = O)

Note That:
f(n) = O(g(n)) 1s both upper and lower bound on 1(n),
this means that the worst and the best case require the

same amount of time with 1n constant factor.

the ®-notation called a tight bound.

Theory:

For any 2 functions f(n) and g(n) we have f(n) = ©(g(n))
if and only 1f f(n) = O (g(n)) and f(n) = Q (g(n)).

Big O (O()) describes the upper bound of the complexity.

Omega (Q()) describes the lower bound of the complexity.

Theta (O()) describes the exact bound of the complexity.

Exercise 2

Q
L2
C
L
| -
O
Q
o
T
Q
=
=

