

 5من 1الصفحة

Event Listeners

Event listeners are among the most frequently used JavaScript structures

in web design. They allow us to add interactive functionality to HTML

elements by “listening” to different events that take place on the page, such

as when the user clicks a button, presses a key, or when an element loads.

When an event happens, we can execute something.

The most common events you might “listen out for”

are load , click , touchstart , mouseover , keydown . You can check

out all the DOM events in MDN's Event Reference guide.

 How to Use Global Onevent Attributes in HTML

If you only want to add a one-liner script to a particular HTML element,

you can use HTML's global onevent attributes defined by the HTML

specification, such as onclick, onload, and onmouseover.

These attributes can be directly added to any HTML element that’s present

on the page, however, their browser support widely varies. For

instance, onclick is supported by all modern browsers up from IE9, while

support for other onevent attributes such as ondrag is more patchy. You

can check out browser support for global onevent attributes by typing

“globaleventhandlers” into the search box on CanIUse.

The syntax of onevent attributes is simple and, as they are global attributes,

you can use them on any element, for instance:

1 <button onclick="alert('Hi');">Click me</button>

Here, the onclick event listener listens to the click event on one specific

button. When the event fires (the user clicks this button),

the alert() callback function is executed.

https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Event_handlers#HTML_onevent_attributes
https://www.w3.org/TR/html52/webappapis.html#event-handlers-on-elements-document-objects-and-window-objects
https://www.w3.org/TR/html52/webappapis.html#event-handlers-on-elements-document-objects-and-window-objects
https://caniuse.com/#feat=mdn-api_globaleventhandlers_onclick
https://caniuse.com/#feat=mdn-api_globaleventhandlers_ondrag
https://caniuse.com/#search=globaleventhandlers

 5من 2الصفحة

If we want to add the same alert functionality to each button
on the page, we should add the click event listener in a
separate script rather than using the onclick attribute.

How to Create an Event Listener in JavaScript

with addEventListener()

Using native JavaScript, we can listen to all the events defined
in MDN’s Event Reference, including touch events. As this
doesn’t require the use of a third-party library, it’s the most
performance-friendly solution to add interactive functionality to
HTML elements.

We can create an event listener in JavaScript using
the addEventListener() method that’s built into every modern
browser.

This is how our alert button example will look using plain
JavaScript and the addEventListener() method:

01

02

03

04

05

06

07

08

09

10

/* Selecting DOM element */

const button = document.querySelector("button");

/* Callback function */

function alertButton() {

 alert('Hi native JavaScript');

}

/* Event listener */

button.addEventListener("click", alertButton, false);

Here it is in action:

In native JavaScript, we need to first select the DOM element
that we want to add the event listener to.
The querySelector() method selects the first element that

https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://caniuse.com/#feat=addeventlistener
https://caniuse.com/#feat=addeventlistener
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector

 5من 3الصفحة

matches a specified selector. So in our example, it selects the

first <button> element on the page.

The custom alertButton() function is the callback function that

will be called when the user clicks the button.

Finally, we add the event listener. We always have to attach

the addEventListener() method to a pre-selected DOM element

using the dot notation. In the parameters, first we define the
event we want to listen to ("click"), then the name of the

callback function (alertButton), finally the value of

the useCapture parameter (we use the default false value, as

we don’t want to capture the event—here’s a simple

explanation about how to use useCapture).

How to Add Functionality to All Buttons

So, the code above adds the alert function to the first button
on the page. But, how would we add the same functionality
to all buttons? To do so, we need to use
the querySelectorAll() method, loop through the elements, and
add an event listener to each button:

01

02

03

04

05

06

07

08

09

10

11

/* Selecting DOM nodelist */

const buttons = document.querySelectorAll("button");

/* Callback function */

function alertButton() {

 alert('Hi native JavaScript');

}

/* Event listeners */

for (let button of buttons) {

 button.addEventListener("click", alertButton, false);

}

https://gomakethings.com/when-to-use-use-capture-in-your-event-listeners/
https://gomakethings.com/when-to-use-use-capture-in-your-event-listeners/
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelectorAll

 5من 4الصفحة

12

As querySelectorAll() returns a NodeList instead of a single

element, we need to loop through the nodes to add a click
event listener to each button. For instance, if we have three
buttons on the page, the code above will create three click
event listeners.

Note that you can only listen to one event
with addEventListener() . So if you want the

custom alertButton() function to fire on another event type

such as mouseover , you’ll need to create a second event

listener rule:

1

2

3

4

5

/* Event listeners */

for (let button of buttons) {

 button.addEventListener("click", alertButton, false);

 button.addEventListener("mouseover", alertButton, false);

}

How to Combine Event Listeners with CSS and Conditionals

Probably the best thing about event listeners is that we can

combine them with CSS and if-else conditional statements.

In this way, we can target the different states of the same
element with CSS and/or JavaScript.

For instance, here’s a very simple example; a reveal-hide
functionality. The HTML only consists of a button and
a section. We will bind the section to the button using a
JavaScript event listener. The button will be responsible for
revealing and hiding the section below it:

1

2

<button class="reveal-button">Click me</button>

<section class="hidden-section">Lorem ipsum dolor sit amet...</section>

 5من 5الصفحة

In the JavaScript, we first create two constants

(revealButton and hiddenSection) for the two HTML elements

using the querySelector() method.

Then, in the revealSection() callback function, we check if the

hidden section has the reveal class or not using

the classList property defined in the DOM API. If the hidden
section has this class, we remove it using the DOM
API’s remove() method, and if it doesn’t, we add it using the
DOM API's add() method. Finally, we create an event listener
for the click event.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

/* Selecting DOM elements */
const revealButton = document.querySelector(".reveal-button");
const hiddenSection = document.querySelector(".hidden-section");

/* Callback function */

function revealSection() {
 if (hiddenSection.classList.contains("reveal")) {
 hiddenSection.classList.remove("reveal");

 } else {
 hiddenSection.classList.add("reveal");
 }
}

/* Event listener */
revealButton.addEventListener("click", revealSection, false);

Now, the JavaScript adds or removes the .reveal class

depending on the current state of the hidden section.
However, we still have to visually hide or reveal the element
using CSS:

1

2

3

4

5

6

.hidden-section {
 display: none;

}
.hidden-section.reveal {
 display: block;
}

And, that’s all! When the user first clicks the button, the hidden
section is revealed, and when they click it the second time, it
gets hidden again. You can test the functionality in the Codepen
demo below:

https://developer.mozilla.org/en-US/docs/Web/API/Element/classList
https://developer.mozilla.org/en-US/docs/Web/API/HTMLSelectElement/remove
https://developer.mozilla.org/en-US/docs/Web/API/HTMLSelectElement/add

