
Django Database Part 2 

Working on Python command line 

Python manage.py shell 

>>>from flights.models import Flight 

>>>flights=Flight.objects.all() 

>>>flights 

This will display the available records in flights object. 

Flight: 1: New York to London 

>>> flight=Flights.objecs.firs()    This command will get the first record in Flights object 

And we can access the properties of this object as per the following commands 

>>> flight.id (to get the id of the flight in the first record) 

1 

>>> flight.origin (to get the origin city of the first record) 

New York 

>>> flight. Destination 

London 

>>> flight.duration 

415 

>>>flight.delete() (by executing this command, the first record in the flight variable will be deleted) 

Part II of the Flight application  

1. Creating Airport table to link any flight to a specific airport 

In models.py file in the flights application write the following code in order to create the airport class 

which will represent the airport table: 

 

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Pencil

Bushra
Pencil

Bushra
Pencil

Bushra
Typewriter
اسم التطبيق متعي

Bushra
Typewriter
اسم الكلاس اللي عرفته في صفحة 
models.py

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
هني خزنت المعلومات اللي في الجدول في المتغير فلايتس

Bushra
Highlight

Bushra
Typewriter
بعدين ناديت المتغير هدا 

Bushra
Highlight

Bushra
Typewriter
.first

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
بعد مادرتها مسحلي كل شيء موجود كانو عندي زوز ريكوردس وتوا فضت خلاص

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
إنشاء جدول مطار لربط أي رحلة بمطار معين

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight



- Where code an attribute that represents the airport code 

- City represents the attribute of the airport city 

- Def__str__(self): the function that give the string representation for the class object. 

 

2. And change the Flights table accordingly: 

 

Where Origin field changed to be a foreign key attribute that holds the airport object as its value,  

On_delete-models.CASCADE: to delete the Flight record once the Airport record is been deleted 

And the related_name=”departure” means: to get all the flights which are departed from a certain 

airport. 

Destination field changed in the same way as the origin field 

Related_name=”arrivals: to list all the flights which landed in a certain airport. 

To change database in Django we have to apply the two following commands: 

- Python manage.py makemigrations 

- Python manage.py migrate 

 Working on Python command line 

Python manage.py shell 

>>>from flights.models import * 

By running this command, Django will bring all the tables created for the flights application which are: 

Airport table and Flights table. 

To create new record in Airport table, we run the following python command: 

>>>jfk=Airport(code=”JFK”, city=”New York”)  

>>>jfk.save() 

>>>lhr=Airport(code=”LHR”, city=”London”) 

>>>lhr.save() 

>>>cdg=Airport(code=”CDG”, city=”Paris”) 

>>>cdg.save() 

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
لحذف سجل الرحلة بمجرد حذف سجل المطار

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
للحصول على جميع الرحلات المغادرة من مطار معين

Bushra
Typewriter
لسرد جميع الرحلات التي هبطت في مطار معين

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Pencil

Bushra
Highlight

Bushra
Highlight

Bushra
Pencil

Bushra
Typewriter
الكلاسات كلهم يعني

Bushra
Highlight

Bushra
Highlight

Bushra
Pencil

Bushra
Pencil

Bushra
Typewriter
متغير نخزنوا فيه في االريكورد

Bushra
Pencil



>>>nrt=Airport(code=”NRT”, city=”Tokyo”) 

>>>nrt.save() 

The following code will add a new flight record based on the above added airport records: 

>>>f=Flight(origin=jfk, destination=lhr, duration=415) 

>>>f.save() 

>>>f.origin (by running this command will display the following) 

Airport: New York   JFK 

>>>lhr.arrivals.all() (this command will list all the flights arrived at the airport LHR) 

Creating a display page to list all the flights 

1. urls.py file: 

 

 

2. Views.py (to create the index view function: 

 

 

This view will render the index.html page that is going to display all flight records. 

 

3. templates->flights->index.html file: 

Bushra
Pencil

Bushra
Pencil

Bushra
Pencil

Bushra
Pencil

Bushra
Pencil

Bushra
Highlight

Bushra
Highlight

Bushra
Pencil

Bushra
Pencil

Bushra
Pencil

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight



 

 

Manipulating database via the Django admin web interface 

1. create a super user account in order to access admin web interface by running the following 

commands: 

Python manage.py createsuperuser  

 

 

2. go to admin.py file under flights application and change the following: 

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight



 

This is going to tell Django admin app to manipulate Airport and Flights tables 

By entering the credentials for Django superuser in the following login page   

 

 

 

 



By clicking on Airports you can add new airport: 

 

 

 

By using the same Django admin interface we can add flights: 

 

 



 

Adding flight page to the flights application that display a specific flight details, when entering a flight 

number in the url: 

- urls.py file: 

 

Where flight_id is an integer variable that will get the flight number from the url entered by the user. 

- Views.py 

Creating a flight function view that will call the flight.html file , this function has the flight_id returned 

from the url entered by user, and it will return flightx object which will get flight record which its 

primary key (pk) is the flight_id entered by the user: 

 
- Templates->flights->flight.html 

Bushra
Highlight



 

Adding Passengers to a flight: 

1. in models.py create a passenger class to represent passenger’s table: 

 

 

First: represents passenger first name 

Last: represents passenger last name 

Flight: represents the flight booked by the passenger, blank: means the passenger can have zero flight 

booked, and the related_name: means list all the passengers booking for the same flight, 

NanyToManyField means that the passenger may book several flights and the flight can have several 

passengers. 

2. to apply these changes to Django database, run the following commands: 

- python manage.py makemigrations 

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
تمثل الرحلة التي حجزها الراكب

Bushra
Highlight

Bushra
Typewriter
يعني أن المسافر لا يمكنه حجز أي رحلة ،

Bushra
Highlight

Bushra
Typewriter
يعني سرد جميع الركاب الذين حجزوا لنفس الرحلة

Bushra
Highlight

Bushra
Typewriter
يعني أنه يجوز للمسافر حجز عدة رحلات ويمكن أن تضم الرحلة عدة ركاب.

Bushra
Pencil

Bushra
Pencil



- python manage.py migrate 

 

3. In admin.py file, change the following: 

 

 

4. in views.py in flight view function we want to display passengers booking for a particular flight: 

 

 

“Passengers”: flight.passenger.all() 

To list all passenger names on a particular flight, Passengers the same name used in the related 

argument. 

5. change the flight.html page accordingly: 

 

Bushra
Pencil

Bushra
Highlight

Bushra
Pencil



 

{% empty %} means in the case of no passengers booked for that flight. 

6. adding new passengers to flight 

Now making a new route to book a flight 

- In urls.py add the following code: 

 

Where flight_id is the id for a particular flight entered by user in the url 

Book is the name of the function view that will perform adding passenger information record to 

passengers table. 

- Views.py 

 

Flight=Flight.objects.get(pk=flight_id) You need the flight and passenger information 

Request.POST[“Passenger”] it is the data about which passenger id we want to register on this flight is 

going to be passed in a form within input field name is passenger. 

Passenger1.flights.add(flight) Inserting row to the passenger table  

Return HttpResponseRedirect(reverse(“flight”,args=(flight_id))) redirect the page back to the flight.html 

page and with the argument which contains the flight id which was entered by the user 

- Creating a form to book a flight for a passenger selected from a dropdown list: 

Bushra
Highlight

Bushra
Pencil

Bushra
Typewriter
هو اسم عرض الوظيفة الذي سيؤدي إلى إضافة سجل معلومات الركاب إلى جدول الركاب

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
إنها البيانات المتعلقة بأي راكب إذا أردنا التسجيل في هذه الرحلة التي سيتم تمريرها في نموذج داخل اسم حقل الإدخال هو الراكب.

Bushra
Highlight

Bushra
Pencil

Bushra
Highlight

Bushra
Typewriter
أعد توجيه الصفحة مرة أخرى إلى صفحة 
flight.html
 وباستخدام الوسيطة التي تحتوي على معرف الرحلة الذي أدخله المستخدم



 

 

 

 

 

 



 


