
 13من 1الصفحة

Stacks

In this lecture, the following topics are covered:

 The concept of Stack

 Stack Representation using Arrays

 Stack Representation using Linked Lists

1. The Concept of Stack

 Stack is an important data structure which stores its elements in an ordered manner.

 We will explain the concept of stacks using an analogy.

 You must have seen a pile of plates where one plate is placed on top of another as shown

in Fig. 7.1.

 Now, when you want to remove a plate, you remove the topmost plate first. Hence, you

can add and remove an element (i.e., a plate) only at/from one position which is the

topmost position.

 A stack is a linear data structure which uses the same principle, i.e., the elements in a stack

are added and removed only from one end, which is called the TOP.

 Hence, a stack is called a LIFO (Last-In-First-Out) data structure, as the element that was

inserted last is the first one to be taken out.

 Now the question is where do we need stacks in computer science? The answer is in

function calls. Consider an example, where we are executing function A. In the course of its

execution, function A calls another function B. Function B in turn calls another function C,

which calls function D.

 13من 2الصفحة

 In order to keep track of the returning point of each active function, a special stack called

system stack or call stack is used.

 Whenever a function calls another function, the calling function is pushed onto the top of the

stack. This is because after the called function gets executed, the control is passed back to

the calling function.

 Look at Fig. 7.2 which shows this concept.

 Now when function E is executed, function D will be removed from the top of the stack and

executed.

 Once function D gets completely executed, function C will be removed from the stack for

execution.

 The whole procedure will be repeated until all the functions get executed.

 Let us look at the stack after each function is executed. This is shown in Fig. 7.3.

 The system stack ensures a proper execution order of functions.

 Therefore, stacks are frequently used in situations where the order of processing is very

important, especially when the processing needs to be postponed until other conditions are

fulfilled.

 Stacks can be implemented using either arrays or linked lists. In the following sections, we

will discuss both array and linked list implementation of stacks

 13من 3الصفحة

2. An Array Representation of Stacks

 In the computer’s memory, stacks can be

represented as a linear array.

 Every stack has a variable called TOP associated

with it, which is used to store the address of the topmost

element of the stack. It is this position where the element

will be added to or deleted from.

 There is another variable called MAX, which is used

to store the maximum number of elements that the stack

can hold.

 If TOP = NULL, then it indicates that the stack is

empty and

 if TOP = MAX–1, then the stack is full. (You must be

wondering why we have written MAX–1. It is because

array indices start from 0.) Look at Fig. 7.4.

 The stack in Fig. 7.4 shows that TOP = 4, so insertions and deletions will be done at this

position. In the above stack, five more elements can still be stored.

2.1 Operations on Stacks

 A stack supports three basic operations: push, pop, and peek.

 The push operation adds an element to the top of the stack and

 the pop operation removes the element from the top of the stack.

 The peek operation returns the value of the topmost element of the stack.

2.1.1 Push Operation

 The push operation is used to insert an element into the stack.

 The new element is added at the topmost position of the stack. However, before inserting

the value, we must first check if TOP=MAX–1, because if that is the case, then the stack is

full and no more insertions can be done.

 13من 4الصفحة

 If an attempt is made to insert a value in a stack that is already full, an OVERFLOW message

is printed. Consider the stack given in Fig. 7.5.

 To insert an element with value 6, we first check if TOP=MAX–1. If the condition is false,

then we increment the value of TOP and store the new element at the position given by

stack[TOP]. Thus, the updated stack becomes as shown in Fig. 7.6.

 Figure 7.7 shows the algorithm to insert an

element in a stack. In Step 1, we first check for the

OVERFLOW condition. In Step 2, TOP is

incremented so that it points to the next location in

the array. In Step 3, the value is stored in the stack

at the location pointed by TOP.

2.1.2 Pop Operation

 The pop operation is used to delete the topmost element from the stack. However, before

deleting the value, we must first check if TOP=NULL because if that is the case, then it

means the stack is empty and no more deletions can be done. If an attempt is made to delete

a value from a stack that is already empty, an UNDERFLOW message is printed. Consider

the stack given in Fig. 7.8

 To delete the topmost element, we first check if TOP=NULL. If the condition is false, then we

decrement the value pointed by TOP. Thus, the updated stack becomes as shown in Fig.

7.9.

 Figure 7.10 shows the algorithm to delete an element from a stack. In Step 1, we first check

for the UNDERFLOW condition. In Step 2, the value of the location in the stack pointed by

TOP is stored in VAL. In Step 3, TOP is decremented.

 13من 5الصفحة

2.1.3 Peek Operation

 Peek is an operation that returns the value of the topmost element of the stack without

deleting it from the stack.

 The algorithm for Peek operation is given in

Fig. 7.11. However, the Peek operation first

checks if the stack is empty, i.e., if TOP = NULL,

then an appropriate message is printed, else the

value is returned.

 Consider the stack given in Fig. 7.12

 Here, the Peek operation will return 5, as it is the value of the topmost element of the stack.

The following C program shows how to implement a stack represented by an array:

 13من 6الصفحة

 13من 7الصفحة

3. A Linked List Representation of Stacks

 We have seen how a stack is created using an array.

 This technique of creating a stack is easy, but the drawback is that the array must be declared

to have some fixed size.

 In case the stack is a very small one or its maximum size is known in advance, then the array

implementation of the stack gives an efficient implementation.

 But if the array size cannot be determined in advance, then the other alternative, i.e., linked

representation, is used.

 In a linked stack, every node has two parts—one that stores data and another that stores the

address of the next node.

 The START pointer of the linked list is used as TOP. All insertions and deletions are done at

the node pointed by TOP. If TOP = NULL, then it indicates that the stack is empty.

 The linked representation of a stack is shown in Fig. 7.13.

3.1 Operations on A Linked Stack
 A linked stack supports all the three stack operations, that is, push, pop, and peek.

3.1.1 Push Operation
 The push operation is used to insert an element into the stack. The new element is added at

the topmost position of the stack. Consider the linked stack shown in Fig. 7.14

 13من 8الصفحة

 To insert an element with value 9, we first check if TOP=NULL. If this is the case, then we

allocate memory for a new node, store the value in its DATA part and NULL in its NEXT part.

The new node will then be called TOP. However, if TOP != NULL, then we insert the new

node at the beginning of the linked stack and name this new node as TOP. Thus, the updated

stack becomes as shown in Fig. 7.15.

Figure 7.16 shows the algorithm to push an

element into a linked stack. In Step 1, memory

is allocated for the new node. In Step 2, the

DATA part of the new node is initialized with

the value to be stored in the node. In Step 3,

we check if the new node is the first node of the

linked list. This is done by checking if TOP =

NULL. In case the IF statement evaluates to

true, then NULL is stored in the NEXT part of

the node and the new node is called TOP.

However, if the new node is not the first node

in the list, then it is added before the first node

of the list (that is, the TOP node) and termed as TOP.

3.1.2 Pop Operation
The pop operation is used to delete the topmost element from a stack. However, before deleting

the value, we must first check if TOP=NULL, because if this is the case, then it means that the

stack is empty and no more deletions can be done. If an attempt is made to delete a value from

a stack that is already empty, an UNDERFLOW message is printed. Consider the stack shown

in Fig. 7.17.

In case TOP != NULL, then we will delete the node pointed by TOP, and make TOP point to the

second element of the linked stack. Thus, the updated stack becomes as shown in Fig. 7.18.

 13من 9الصفحة

Figure 7.19 shows the algorithm to delete an element

from a stack. In Step 1, we first check for the

UNDERFLOW condition. In Step 2, we use a pointer

PTR that points to TOP. In Step 3, TOP is made to point

to the next node in sequence. In Step 4, the memory

occupied by PTR is given back to the free pool.

The following C program shows how to implement a

stack represented by a linked list:

 13من 10الصفحة

 13من 11الصفحة

4. Applications of Stacks

In this section we will discuss typical problems where stacks can be easily applied for a simple

and efficient solution.
The following are some of the problems where the stack can be applied:

o Reversing a list
o Parentheses checker
o Conversion of an infix expression into a postfix expression
o Evaluation of a postfix expression
o Conversion of an infix expression into a prefix expression
o Evaluation of a prefix expression
o Recursion

However, only reversing a list and recursion are introduced here.

4.1 Reversing a List

A list of numbers can be reversed by reading each number from an array starting from the first

index and pushing it on a stack. Once all the numbers have been read, the numbers can be

popped one at a time and then stored in the array starting from the first index. The following

program shows how to use the stack data structure to reverse an n integer numbers stored in

an array. Notice that pushing first these numbers into the stack and then popping them out can

accomplish this task.

 13من 12الصفحة

4.2 Recursion

 Recursion is an implicit application of the stack.

 A recursive function is defined as a function that calls itself to solve a smaller version of its

task until a final call is made which does not require a call to itself.

 Since a recursive function repeatedly calls itself, it makes use of the system stack to

temporarily store the return address and local variables of the calling function.

 Every recursive solution has two major cases. They are:

o Base case, in which the problem is simple enough to be solved directly without

making any further calls to the same function.

o Recursive case, in which first the problem at hand is divided into simpler sub-parts.

Second, the function calls itself but with sub-parts of the problem obtained in the

first step. Third, the result is obtained by combining the solutions of simpler sub-

parts.

o Therefore, recursion is defining large and complex problems in terms of smaller and

more easily solvable problems. In recursive functions, a complex problem is defined

in terms of simpler problems and the simplest problem is given explicitly.

 To understand recursive functions, let us take an example of calculating factorial of a

number. To calculate n!, we multiply the number with factorial of the number that is 1 less

than that number. In other words, n! = n × (n–1)!.

The series of problems and solutions can be given as shown in Fig. 7.27.

.

 13من 13الصفحة

Now if you look at the problem carefully, you can see that we can write a recursive function to

calculate the factorial of a number.

Every recursive function must have a base case and a recursive case. For the factorial

function:

o Base case is when n = 1, because if n = 1, the result will be 1 as 1! = 1.

o Recursive case of the factorial function will call itself but with a smaller value of n. This

case can be given as:

Look at the following program which calculates the factorial of a number recursively

