
 6من 1الصفحة

The Queue Data Structure

In this lecture, the following topics are covered:

 The concept of Queue

 Queue Representation using Arrays

 Queue Representation using Linked Lists

1. The Concept of Queue

 They’re also used to model real-world situations such as people waiting in

line at a bank, airplanes waiting to take off, or data packets waiting to be

transmitted over the Internet.

 There are various queues quietly doing their job in your computer’s (or the

network’s) operating system:

 There’s a printer queue where print jobs wait for the printer to be

available.

 A queue also stores keystroke data as you type at the keyboard. This

way, if you’re using a word processor but the computer is briefly

doing something else when you hit a key, the keystroke won’t be lost;

it waits in the queue until the word processor has time to read it.

Using a queue guarantees the keystrokes stay in order until they can

be processed.

 A queue is a FIFO (First-In, First-Out) data structure in which the element

that is inserted first is the first one to be taken out.

 The elements in a queue are added at one end called the REAR and

removed from the other end called the FRONT.

 Queues can be implemented by using either arrays or linked lists.

 In this section, we will see how queues are implemented using each of

these data structures.

2. Array Representation of Queues

 Queues can be easily represented using linear arrays.

 As stated earlier, every queue has front and rear variables that point to the

position from where deletions and insertions can be done, respectively.

 6من 2الصفحة

 The array representation of a queue is shown in Fig. 8.1.

2.1 Operations on Queues

 In Fig. 8.1, FRONT = 0 and REAR = 5.

 Suppose we want to add another element with value 45, then REAR would be

incremented by 1 and the value would be stored at the position pointed by

REAR.

 The queue after addition would be as shown in Fig. 8.2. Here, FRONT = 0 and

REAR = 6.

 Every time a new element has to be added, we repeat the same procedure.

 If we want to delete an element from the queue, then the value of FRONT will

be incremented.

 Deletions are done from only this end of the queue.

 The queue after deletion will be as shown in Fig. 8.3. Here, FRONT = 1 and

REAR = 6.

 However, before inserting an element in a queue, we must check for overflow

conditions.

 An overflow will occur when we try to insert an element into a queue that is

already full.

 When REAR = MAX – 1, where MAX is the size of the queue, we have an

overflow condition.

 Note that we have written MAX – 1 because the index starts from 0.

 Similarly, before deleting an element from a queue, we must check for

underflow conditions. An underflow condition occurs when we try to delete an

element from a queue that is already empty.

 If FRONT = –1 and REAR = –1, it means there is no element in the queue.

 6من 3الصفحة

 Let us now look at Figs 8.4 and 8.5 which show the algorithms to insert and

delete an element from a queue.

 Figure 8.4 shows the algorithm to insert an element in a queue.

o In Step 1, we first check for the overflow condition.

o In Step 2, we check if the queue is empty. In case the queue is empty,

then both FRONT and REAR are set to zero, so that the new value can

be stored at the 0th location. Otherwise, if the queue already has some

values, then REAR is incremented so that it points to the next location

in the array.

o In Step 3, the value is stored in the queue at the location pointed by

REAR.

 Figure 8.5 shows the algorithm to delete an element from a queue.

o In Step 1, we check for underflow condition.

o An underflow occurs if FRONT = –1 or FRONT > REAR. However, if

queue has some values, then FRONT is incremented so that it now

points to the next value in the queue.

3. A Linked List Representation of Queues

 We have seen how a queue is created using an array.

 Although this technique of creating a queue is easy, its drawback is that the

array must be declared to have some fixed size.

 If we allocate space for 50 elements in the queue and it hardly uses 20–25

locations, then half of the space will be wasted.

 And in case we allocate less memory locations for a queue that might end up

growing large and large, then a lot of re-allocations will have to be done,

thereby creating a lot of overhead and consuming a lot of time.

 6من 4الصفحة

 In case the queue is a very small one or its maximum size is known in

advance, then the array implementation of the queue gives an efficient

implementation.

 But if the array size cannot be determined in advance, the other alternative,

i.e., the linked representation is used.

 In a linked queue, every element has two parts, one that stores the data and

another that stores the address of the next element.

 The START pointer of the linked list is used as FRONT.

 Here, we will also use another pointer called REAR, which will store the address

of the last element in the queue.

 All insertions will be done at the rear end and all the deletions will be done at

the front end. If FRONT = REAR = NULL, then it indicates that the queue is

empty. The linked representation of a queue is shown in Fig. 8.6.

3.1 Operations on Linked Queues

 A queue has two basic operations: insert and delete.

 The insert operation adds an element to the end of the queue, and the delete

operation removes an element from the front or the start of the queue.

 Apart from this, there is another operation peek which returns the value of the

first element of the queue.

Insert Operation

 The insert operation is used to insert an element into a queue.

 The new element is added as the last element of the queue.

 Consider the linked queue shown in Fig. 8.7.

o To insert an element with value 9, we first check if FRONT=NULL.

o If the condition holds, then the queue is empty. So, we allocate memory

for a new node, store the value in its data part and NULL in its next part.

o The new node will then be called both FRONT and rear.

o However, if FRONT != NULL, then we will insert the new node at the

rear end of the linked queue and name this new node as rear.

o Thus, the updated queue becomes as shown in Fig. 8.8.

 6من 5الصفحة

 Figure 8.9 shows the algorithm to insert an element in a linked queue.

 In Step 1, the memory is allocated for the new node.

 In Step 2, the DATA part of the new node is initialized with the value to be

stored in the node.

 In Step 3, we check if the new node is the first node of the linked queue.

This is done by checking if FRONT = NULL. If this is the case, then the

new node is tagged as FRONT as well as REAR.

 Also NULL is stored in the NEXT part of the node (which is also the

FRONT and the REAR node).

 However, if the new node is not the first node in the list, then it is added at

the REAR end of the linked queue (or the last node of the queue).

Delete Operation

 The delete operation is used to delete the element that is first inserted in a

queue, i.e., the element whose address is stored in FRONT.

 However, before deleting the value, we must first check if FRONT=NULL

because if this is the case, then the queue is empty and no more deletions

can be done.

 If an attempt is made to delete a value from a queue that is already empty,

an underflow message is printed.

 Consider the queue shown in Fig. 8.10.

o To delete an element, we first check if FRONT=NULL.

o If the condition is false, then we delete the first node pointed by

FRONT.

 6من 6الصفحة

o The FRONT will now point to the second element of the linked

queue. Thus, the updated queue becomes as shown in Fig. 8.11.

 Figure 8.12 shows the algorithm to delete an element from a linked queue.

 In Step 1, we first check for the underflow condition.

 If the condition is true, then an appropriate message is displayed, otherwise

in Step 2, we use a pointer PTR that points to FRONT.

 In Step 3, FRONT is made to point to the next node in sequence.

 In Step 4, the memory occupied by PTR is given back to the free pool.

