
 20من 1الصفحة

Linked Lists#1

In this lecture, the following topics are covered:

 The Concept of Linked Lists

 Dynamic Memory Management

 Singly Linked Lists

 A Singly Linked List implementation in C

1. The Concept of Linked Lists

 A linked list is a linear data structure consisting of a collection of data

elements. These data elements are called nodes.

 A linked list is a data structure which in turn can be used to implement

other data structures such as stacks, queues, and their variations.

 A linked list can be perceived as a sequence of nodes in which each

node contains one or more data fields and a pointer to the next node.

Figure 1. A simple linked list.

 In Fig. 1, we can see a linked list in which every node contains two

parts, an integer and a pointer to the next node.

 The left part of the node which contains data may include a simple

data type, an array, or a structure.

 The right part of the node contains a pointer to the next node (or

address of the next node in sequence).

 The last node will have no next node connected to it, so it will store a

special value called NULL.

 In Fig.1, the NULL pointer is represented by X.

 A NULL pointer denotes the end of the list.

 20من 2الصفحة

 Since in a linked list, every node contains a pointer to another node

which is of the same type, it is also called a self-referential data type.

 Linked lists contain a pointer variable START that stores the address of

the first node in the list.

 We can traverse the entire list using START which contains the address

of the first node; the next part of the first node in turn stores the

address of its succeeding node. Using this technique, the individual

nodes of the list will form a chain of nodes.

 If START = NULL, then the linked list is empty and contains no nodes.

 In C, we can implement a linked list using the following code:

 Unlike arrays, linked lists do not store their nodes in consecutive

memory locations.

 Unlike an array, a linked list does not allow random access of data.

Nodes in a linked list can be accessed only in a sequential manner.

In other words, the processing of a linked list always starts at the

first node.

 But like an array, insertions and deletions can be done at any point

in the list in a constant time.

 Unlike arrays, linked lists are dynamic. This means that linked lists

can grow and shrink at execution time.

*Linked lists provide an efficient way of storing related data and perform

basic operations such as insertion, deletion, and updating of information

at the cost of extra space required for storing address of the next node.

2. Linked List Representation in Memory

Let us see how a linked list is maintained in the memory.

 In order to form a linked list, we need a structure called node which

has two fields, data and next.

 20من 3الصفحة

 data will store the information part and next will store the address of

the next node in sequence.

 Consider Fig. 2. In the figure, we can see that the variable START is used

to store the address of the first node. Here, in this example, START =

1, so the first data is stored at address 1, which is H.

 The corresponding next stores the address of the next node, which is

4.

 So, we will look at address 4 to fetch the next data item. The second

data element obtained from address 4 is E.

 Again, we see the corresponding next to go to the next node. From the

entry in the next, we get the next address, that is 7, and fetch L as the

data.

 We repeat this procedure until we reach a position where the next

entry contains NULL, as this would denote the end of the linked list.

When we traverse data and next in this manner, we finally see that the

linked list in the above example stores characters that when put

together form the word HELLO.

Figure 2. Memory representation of a simple linked list.

 Now, look at Fig. 3, two different linked lists are

simultaneously maintained in the memory.

 There is no ambiguity in traversing through the list because each list

NULL

 20من 4الصفحة

maintains a separate Start pointer, which gives the address of the

first node of their respective linked lists. The rest of the nodes are

reached by looking at the value ambiguity stored in the NEXT.

 By looking at the figure, we can conclude that numbers of the

students who have opted for Biology are S01, S03, S06, S08, S10, and

S11. Similarly, roll numbers of the students who chose Computer

Science are S02, S04, S05, S07, and S09.

Figure 3. Two linked lists which are simultaneously maintained in the memory.

3. Dynamic Memory Management

 Creating and maintaining dynamic data structures (linked lists for

example) that grow and shrink at execution time requires dynamic

memory management, which has two components:

o obtaining more memory at execution time to hold new

nodes, and

o releasing memory that is no longer needed.

 The function malloc, the function free and the operator sizeof are

essential to dynamic memory management.

NULL

NULL

 20من 5الصفحة

3.1 The malloc Function

 To request memory at execution time, pass to the function malloc

the number of bytes to allocate.

 If successful, malloc returns a void * pointer to the allocated

memory. Recall that a void * pointer may be assigned to a variable

of any pointer type.

 Function malloc most commonly is used with sizeof. For example,

the following statement determines a struct node object’s size in

bytes with sizeof (struct node), allocates a new area in memory of

that number of bytes and stores a pointer to the allocated memory

in newPtr:

 The memory is not guaranteed to be initialized, though many

implementations initialize it for security.

 If no memory is available, malloc returns NULL.

 Always test for a NULL pointer before accessing the dynamically

allocated memory to avoid runtime errors that might crash your

program.

3.2 The free Function

 When you no longer need a block of dynamically allocated memory,

return it to the system immediately by calling the free function to

deallocate the memory. This returns it to the system for potential

reallocation in the future. To free the memory from the preceding

malloc call, use the statement

 After deallocating memory, set the pointer to NULL. This prevents

accidentally referring to that memory, which may have already been

allocated for another purpose.

 Not freeing dynamically allocated memory when it’s no longer needed

can cause the system to run out of memory prematurely. This is

sometimes called a “memory leak.”

 Referring to memory that has been freed is an error that typically

causes a program to crash.

 20من 6الصفحة

 Freeing memory that you did not allocate dynamically with malloc is

an error.

4. Singly Linked Lists

 A singly linked list is the simplest type of linked list in which every node

contains some data and a pointer to the next node of the same data

type.

 By saying that the node contains a pointer to the next node, we mean

that the node stores the address of the next node in sequence.

 A singly linked list allows traversal of data only in one way. Figure 4

shows a singly linked list.

Figure 4. A Singly Linked List.

4.1 Traversing a Linked List

 Traversing a linked list means accessing the nodes of the list in order

to perform some processing on them.

 Remember a linked list always contains a pointer variable START

(Head) which stores the address of the first node of the list.

 End of the list is marked by storing NULL or –1 in the NEXT field of the

last node.

 For traversing the linked list, we also make use of another pointer

variable PTR which points to the node that is currently being accessed.

The algorithm to traverse a linked list is shown in Figure 5.

Figure 5. Algorithm for traversing a linked list.

 In this algorithm, we first initialize PTR with the address of START.

 20من 7الصفحة

 So now, PTR points to the first node of the linked list.

 Then in Step 2, a while loop is executed which is repeated till PTR

processes the last node, that is until it encounters NULL.

 In Step 3, we apply the process (e.g., print) to the current node, that

is, the node pointed by PTR.

 In Step 4, we move to the next node by making the PTR variable

point to the node whose address is stored in the NEXT field.

4.2 Searching for a Value in a Linked List

 Searching a linked list means to find a particular element in the linked

list.

 As already discussed, a linked list consists of nodes which are divided

into two parts, the information part and the next part. So searching

means finding whether a given value is present in the information part

of the node or not.

 If it is present, the algorithm returns the address of the node that

contains the value.

 Figure 6 shows the algorithm to search a linked list.

o In Step 1, we initialize the pointer variable PTR with START that

contains the address of the first node.

o In Step 2, a while loop is executed which will compare every

node’s DATA with VAL for which the search is being made.

o If the search is successful, that is, VAL has been found, then the

address of that node is stored in POS and the control jumps to

the last statement of the algorithm.

o However, if the search is unsuccessful, POS is set to NULL which

indicates that VAL is not present in the linked list

Figure 6. Algorithm to search a linked list.

 20من 8الصفحة

 Consider the linked list shown in Fig. 7. If we have VAL = 4, then the

flow of the algorithm can be explained as shown in the figure.

Figure 7. Searching a linked list

4.3 Inserting a New Node in a Linked List

 In this section, we will see how a new node is added into an already

existing linked list.

 We will take four cases and then see how insertion is done in each

case.

o Case 1: The new node is inserted at the beginning.

o Case 2: The new node is inserted at the end.

o Case 3: The new node is inserted after a given node.

o Case 4: The new node is inserted before a given node.

4.3.1 Inserting a Node at the Beginning of a Linked List
 Consider the linked list shown in Fig. 8.

 Suppose we want to add a new node with data 9 and add it as the first

node of the list. Then the following changes will be done in the linked

list.

 20من 9الصفحة

Figure 8. Inserting an element at the beginning of a linked list.

4.3.2 Inserting a Node at the End of a Linked List
 Consider the linked list shown in Fig 9.

 Suppose we want to add a new node with data 9 as the last node of

the list. Then the following changes will be done in the linked list:

Figure 9. Inserting an element at the end of a linked list.

4.3.3 Inserting a Node After a Given Node in a Linked List

 Consider the linked list shown in Fig. 10.

 Suppose we want to add a new node with value 9 after the node

containing data 3.

 20من 10الصفحة

Figure 10. Inserting an element after a given node in a linked list.

4.3.4 Inserting a Node Before a Given Node in a Linked List

 Consider the linked list shown in Fig. 11.

 Suppose we want to add a new node with value 9 before the node

containing 3.

 20من 11الصفحة

Figure 11. Inserting an element before a given node in a linked list.

4.4 Deleting a Node from a Linked List

 In this section, we will discuss how a node is deleted from an

already existing linked list.

 We will consider three cases and then see how deletion is done in

each case.

o Case 1: The first node is deleted.

o Case 2: The last node is deleted.

o Case 3: The node after a given node is deleted.

4.4.1 Deleting the First Node from a Linked List

 Deleting the First Node from a Linked List Consider the linked list in Fig.

12.

 When we want to delete a node from the beginning of the list, then

the following changes will be done in the linked list:

 20من 12الصفحة

Figure 12. Deleting the first node of a linked list.

 Figure 13 shows the algorithm to delete the first node from a linked

list.

 In Step 1, we check if the linked list exists or not. If START = NULL,

then it signifies that there are no nodes in the list and the control is

transferred to the last statement of the algorithm.

 However, if there are nodes in the linked list, then we use a pointer

variable PTR that is set to point to the first node of the list. For this,

as shown in Step 2, we initialize PTR with START that stores the

address of the first node of the list. In Step 3, START is made to point

to the next node in sequence and finally the memory occupied by

the node pointed by PTR (initially the first node of the list) is freed

and returned to the free pool.

Figure 13. Algorithm to delete the first.

4.4.2 Deleting the Last Node from a Linked List

 Consider the linked list shown in Fig. 14. Suppose we want to delete

the last node from the linked list, then the following changes will be

done in the linked list:

 20من 13الصفحة

Figure 14. Deleting the last node of a linked list.

 Figure 15 shows the algorithm to delete the last node from a linked

list.

 In Step 2, we take a pointer variable PTR and initialize it with START.

That is, PTR now points to the first node of the linked list.

 In the while loop, we take another pointer variable PREPTR such that

it always points to one node before the PTR.

 Once we reach the last node and the second last node, we set the NEXT

pointer of the second last node to NULL, so that it now becomes the

(new) last node of the linked list.

 The memory of the previous last node is freed and returned back to

the free pool.

Figure 15. Algorithm to delete the last node.

4.4.3 Deleting the Node After a Given Node in a Linked List

 Consider the linked list shown in Fig. 16. Suppose we want to delete

the node that succeeds the node which contains data value 4. Then

the following changes will be done in the linked list:

 20من 14الصفحة

Figure 16. Deleting the node after a given node in a linked list.

 Figure 17 shows the algorithm to delete the node after a given node

from a linked list.

 In Step 2, we take a pointer variable PTR and initialize it with START.

That is, PTR now points to the first node of the linked list.

 In the while loop, we take another pointer variable PREPTR such

that it always points to one node before the PTR.

 Once we reach the node containing VAL and the node succeeding

it, we set the next pointer of the node containing VAL to the address

contained in next field of the node succeeding it.

 The memory of the node succeeding the given node is freed and

returned back to the free pool.

 20من 15الصفحة

Figure 17. Algorithm to delete the node after a given node.

5. Linked lists in C

The following C program shows how to implement the different

operations (insertion, deletion and search) that can be performed on

linked lists which have been explained earlier:

 20من 16الصفحة

 20من 17الصفحة

 20من 18الصفحة

 20من 19الصفحة

 20من 20الصفحة

