
04/06/1445

1

SOFTWARE DESIGN PATTERNS
CREATIONAL PATTERN

ABOUT THE COURSE

 This course is all about Design Patterns. In this course, we will present to you, the

most useful and famous design patterns.

 In this lesson, first we will see what really are the Design Patterns. What is their

use? Why one should really use them, and how to use them?

 Later, we will also see how patterns are organized, and categorized into different

groups according to their behavior and structure.

 In the next several lessons, we will discuss about the different design patterns

one by one. We will go into depth and analyze each and every design pattern, and

will also see how to implement them in Java.

04/06/1445

2

INTRODUCTION

 In the late 70’s, an architect named Christopher Alexander started the

concept of patterns. Alexander’s work focused on finding patterns of

solutions to particular sets of forces within particular contexts.

 Christopher Alexander was a civil engineer and an architect, his patterns

were related to architects of buildings, but the work done by him inspired an

interest in the object-oriented (OO) community.

 GOF (Gang of four) : Design Patterns: Elements of Reusable Object-Oriented

Software (1994) is a software engineering book describing software design

patterns. The book was written by Erich Gamma, Richard Helm, Ralph

Johnson, and John Vlissides

WISH LIST AND OOP-PRINCIPLES

 loose coupling: 1 change = ceteris paribus

 code reuse (is not the same as copy/paste)

 open for extension, closed for modification

 encapsulate what varies

 single responsibility principle

 prefer composition over inheritance

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Erich_Gamma
https://en.wikipedia.org/wiki/Ralph_Johnson_(computer_scientist)
https://en.wikipedia.org/wiki/Ralph_Johnson_(computer_scientist)
https://en.wikipedia.org/wiki/John_Vlissides
https://en.wikipedia.org/wiki/John_Vlissides

04/06/1445

3

SOFTWARE MODULE CHARACTERISTICS

 Coupling

 Degree with which methods of different modules are dependent on each other

 A loose coupling is good quality

 The open-closed principle states that a software module should be:

 Open for extension — It should be possible to alter the behavior of a module or add new

features to the module functionality.

 Closed for modification — Such a module should not allow its code to be modified.

BECOMING A CHESS MASTER

 First learn rules and physical requirements

 e.g., names of pieces, legal movements, chess board

 geometry and orientation, etc.

 Then learn principles

 e.g., relative value of certain pieces, strategic value of

 center squares, power of a threat, etc.

 However, to become a master of chess, one must

 study the games of other masters

 These games contain patterns that must be understood,

 memorized, and applied repeatedly

 There are hundreds of these patterns

04/06/1445

4

BECOMING A SOFTWARE DESIGNER MASTER

 First learn the rules

 e.g., the algorithms, data structures and languages of software

 Then learn the principles

 e.g., structured programming, modular programming, object oriented

programming, generic programming, etc.

 However, to truly master software design, one must study the designs

of other masters

 These designs contain patterns must be understood, memorized, and applied

repeatedly

 There are hundreds of these patterns

ECOSYSTEM OF PATTERNS

 Programming Patterns (idioms)

 low-level pattern specific to a programming language. An idiom describes how to implement

particular aspects of components or the relationships between them using the features of the

given language. e.g. singleton, string copy in C (while (*d++=*s++);

 Design Patterns

 A design pattern provides a scheme for refining the subsystems or components of a software

system, or the relation ships between them. It describes a commonly-recurring structure of

communicating components that solves a general design problem within a particular context.

 Architectural Patterns

 fundamental structural organization schema for software systems. It provides a set of

predefined subsystems, their responsibilities, and includes rules and guidelines for organizing

the relationships between them.

 e.g. layers, distribution, security, MVC…

04/06/1445

5

WHAT ARE DESIGN PATTERNS?

 As an Object Oriented developer, we may think that our code contains all the

benefits provided by the Object Oriented language. (flexibility, reusability,

maintainability).Unfortunately, these advantages do not come by its own.

 Christopher had said that ―Each pattern describes a problem that occurs over and

over again in our environment, and then describes the core of the solution to that

problem, in such a way that you can use this solution a million times over, without

ever doing it the same way twice‖.

 we can think of patterns as a formal document which contains

recurring design problems and its solutions

WHAT ARE DESIGN PATTERNS? CONT.….

 In software engineering, a design pattern is a general repeatable solution to a

commonly occurring problem in software design.

 Design patterns are ―descriptions of communicating objects and classes that are

customized to solve a general design problem in a particular context.‖

 In general, a pattern has four essential elements:

 Pattern name,

 The problem: describes when to apply the pattern.

 The solution: describes the elements that make up the design, their relationships,

responsibilities, and collaborations

 The results and consequences of applying the pattern: Costs and benefits of applying the

pattern.

04/06/1445

6

WHY DESIGN PATTERN

 Flexibility: Using design patterns your code becomes flexible. It helps to provide the correct level of

abstraction due to which objects become loosely coupled to each other which makes your code

easy to change.

 Reusability: Loosely coupled and cohesive objects and classes can make your code more

reusable. This kind of code becomes easy to be tested as compared to the highly coupled code.

 Design patterns offer a common dictionary between developers ,it allow developers to

communicate using well-known, well understood names for software interactions.

 Capture best practices: Design patterns capture solutions which have been successfully applied to

problems. By learning these patterns and the related problem, an inexperienced developer learns

a lot about software design.

 simply,

 Design patterns help a designer get a design "right" faster.

HOW TO SELECT AND USE ONE

 Have a very deep understanding of them in order to implement the correct design

pattern for the specific design problem.

 First, you need to identify the kind of design problem you are facing. A design

problem can be categorized into creational, structural, or behavioral. Based to this

category you can filter the patterns and selects the appropriate one.

 Recognizing when and where to use design patterns requires familiarity &

experience

04/06/1445

7

DESIGN PATTERNS CLASSIFICATION

CLASSIFICATION OF PATTERNS BASED ON PURPOSE

• create objects for you, rather than having you instantiate objects directly.
This gives your program more flexibility in deciding which objects need to
be created for a given case.

Creational
patterns

• help you compose groups of objects into larger structures, such as complex
user interfaces or accounting data.

• is particularly useful for making independently developed class libraries work
together.

Structural
patterns

• help you define the communication between objects in your system and
how the flow is controlled in a complex program.

Behavior
patterns

The GOF book defines 3 major types of patterns

04/06/1445

8

GOF DESIGN PATTERNS

 based on book of Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Elements of Reusable

Object-Oriented Software

CREATIONAL PATTERNS

 An important point of writing code in Object Oriented Programming is Object/Instance creation.

Any program requires a considerable amount of object creation. Wouldn’t it be nice if we had

some standard ways to create objects? Hence, came the creational design patterns. These provide

standardized pathways to create instances.

 These patterns control the way we define and design the objects, as well as how we instantiate

them. Some encapsulate the creation logic away from users and handles creation

(Factory and Abstract Factory), some focus on the process of building the objects themselves

(Builder), some minimize the cost of creation (Prototype) and some control the number of

instances on the whole JVM (Singleton).

https://stackabuse.com/creational-design-patterns-in-java/
https://stackabuse.com/creational-design-patterns-in-java/
https://stackabuse.com/creational-design-patterns-in-java/
https://stackabuse.com/creational-design-patterns-in-java/
https://stackabuse.com/the-builder-design-pattern-in-java/
https://stackabuse.com/creational-design-patterns-in-java/
https://stackabuse.com/creational-design-patterns-in-java/

04/06/1445

9

CREATIONAL PATTERNS

 The Factory Pattern - provides a simple decision making class that returns one of

several possible subclasses of an abstract base class depending on the data that

are provided.

 The Abstract Factory Pattern - Encapsulate a set of analogous factories that

produce families of objects.

 The Builder Pattern - Encapsulate the construction of complex objects from their

representation; so, the same building process can create various representations

by specifying only type and content.

 The Prototype Pattern - A fully initialized instance to be copied or cloned

 The Singleton Pattern - Ensure that only a single instance of a class exists and

provide a single method for gaining access to it

FACTORY METHOD

 A Factory design pattern also known as the ―Factory Method pattern‖ is a type of

Creational design patterns. By the name we can guess it produces or creates

something, in our case objects.

 Advantage of Factory Design Pattern

 Factory Method Pattern allows the sub-classes to choose the type of objects to create.

 Where to use Factory Pattern

 We need to create different type of objects

 Object creation is dynamic – at run time we need to decide which object to be created

 Different methods contain same object creation code

04/06/1445

10

UML CLASS DIAGRAM

 Participants

 The classes and objects participating in this pattern are:

• Product

• defines the interface of objects the factory method creates

• Concrete Product

• implements the Product interface

• factory

• declares the factory method, which returns an object of type
Product.

THE IMPLEMENTATION:

The client needs a product, but instead of creating

it directly using the new operator, it asks the

factory object for a new product, providing the

information about the type of object it needs.

The factory instantiates a new concrete product

and then returns to the client the newly created

product.

The client uses the products as abstract products

without being aware about their concrete

implementation.

04/06/1445

11

NOTIFICATION SERVICE EXAMPLE

 Consider we want to

implement a notification

service through email, SMS,

and push notification.

 we have an interface

called Notification, and three

concrete classes are

implementing Notification

interface. A factory class

NotificationFactory is created

to get a Notification object.

UML class diagram

Product

Concrete Product

Factory

NOTIFICATION SERVICE EXAMPLE

Create Notification interface

public interface Notification {

 void notifyUser();

}

Note- Above interface could be created as an abstract

class as well.

Create all implementation classes

public class SMSNotification implements Notification {

 @Override

 public void notifyUser()

 {

 System.out.println("Sending an SMS notification");

 }

}

SMSNotification.java

public class EmailNotification

implements Notification {

 @Override

 public void notifyUser()

 {

 System.out.println("Sending an

e-mail notification");

 }

}

EmailNotification.java

public class PushNotification implements

Notification {

 @Override

 public void notifyUser()

 {

 System.out.println("Sending a

push notification");

 }

} PushNotification.java

04/06/1445

12

CREATE A FACTORY CLASS NOTIFICATIONFACTORY.JAVA TO INSTANTIATE

CONCRETE CLASS.

public class NotificationFactory {

 public Notification createNotification(String channel)

 {

 if (channel == null || channel.isEmpty())

 return null;

 if ("SMS".equals(channel)) {

 return new SMSNotification();

 }

 else if ("EMAIL".equals(channel)) {

 return new EmailNotification();

 }

 else if ("PUSH".equals(channel)) {

 return new PushNotification();

 }

 return null;

 }

}

 Now let’s use factory class to create and get an object of concrete class by passing some information.

04/06/1445

13

BENEFITS AND LIMITATIONS OF FACTORY DESIGN PATTERN

 The client code doesn't directly instantiate objects using the ̀ new` operator. Instead, the Factory

takes the responsibility of determining which object to create based on the parameters it receives.

 This superclass defines the API the factory-produced objects will adhere to, maintaining uniformity.

 Benefits

 Creation of different types of objects is possible at run time

 It separates the object creation logic from the object usage logic

 Removes duplicate code

 Thus, makes changing or addition to object creation easier

 Limitations

 The different types of objects created must have the same parent class

 The addition of new classes and interfaces could increase the complexity of the code

ABSTRACT FACTORY

 Abstract Factory pattern adds a ―Factory‖ that brings together all these factories. Further, it

decides at run time which factory should be invoked. This later creates an object of a specific

family. Therefore, this pattern is also known as ―A Factory of Factories‖.

 Abstract Factory Pattern in java encapsulates a group of factories in the process of object creation

 When can we use Abstract Factory Pattern?

 The system has multiple types (families) of objects

 As a result, if we need different object or functions they should be from the same group

 The system needs to create or compose objects at run time according to the user input

 The system need different function but they should be in groups

 If a(), b(), c() and p(),q(),r() two groups of functions, if we call a() then we can call either function b() or

function c() only.

04/06/1445

14

STRUCTURE

 AbstractFactory declares an interface for operations that create abstract product objects.

 ConcreteFactory implements the operations to create concrete product objects.

 AbstractProduct declares an interface for a type of product object.

 ConcreteProduct defines a product object to be created by the corresponding concrete factory. implements the

AbstractProduct interface.

 Client uses only interfaces declared by AbstractFactory and AbstractProduct classes.

IMPLEMENT ABSTRACT FACTORY

PATTERN

 For example we have two groups of utensils Microwave safe and non microwave safe products. If we need microwave

safe products we should use microwave safe bowl, plate and cup. We can not mix microwave safe and non microwave

safe. When we need to avoid mixing we can use abstract factory pattern by creating factories for each.

 Implement Abstract Factory Pattern:

 Find out the different object types in the application

 Create Interface and implementing classes for each type
For eg, Utensils : Plate, Bowl, Cup, Plate_MW, Bowl_MW, Cup_MW (_MW is used for microwave safe products)

 Create factory classes to group the classes

 Microwave safe: Plate_MW, Bowl_MW, Cup_MW

 Non Microwave safe: Plate, Bowl, Cup

 Declare Abstract factory interface and declare all required methods from factory

 Implement Abstract factory interface by created families

 Create code which will use Abstract factory to get factory and then call the methods on that factory

 Use the abstract factory in the code instate of objects directly

04/06/1445

15

UML : BASIC UNDERSTANDING OF THE IMPLEMENTATION

 AbstractFactory

ConcreteFactory
ConcreteFactory

AbstractProduct

ConcreteProduct

public interface Utensil{

 public String getType();

 public Double getPrice();

 public Double getSize();

}

public class Plate implements Utensil{

String type;

Double Prise;

Double size;

 public Plate() {

 this.type = "PALTE";

 this.Prise= 8.50;

 this.size= 15.00;

 }

 @Override

 public String getType(){

 return type;

 }

 @Override

 public Double getPrise(){

 return Prise;

 }

 @Override

 public Double getSize(){

 return size;

 }}

public class Bowl implements Utensil{

 ... code with method implementations

}

public class Bowl_MW implements Utensil{

 ... code with method implementations

}

public class Cup_MW implements Utensil{

 ... code with method implementations

}

04/06/1445

16

 We have two different type of utensils microwave safe and non microwave safe, as a result, we create factory

classes

public class MicrowaveSafeFactory {

public Utensil getPlate() {

return new Plate();

}

public Utensil getBowl() {

return new Bowl();

}

public Utensil getCup() {

return new Cup();

}

}

public class NonMicrowaveSafeFactory {

public Utensil getPlate() {

return new Plate_MW();

}

public Utensil getBowl() {

return new Bowl_MW();

}

public Utensil getCup() {

return new Cup_MW();

}

}

 we will create our AbstractUtensilFactory interface. It groups the other factories together.

public interface AbstractUtensilFactory {

public Utensil getPlate();

 public Utensil getBowl();

}

 Now we will implement the AbstractUtensilFactory interface by the factories created earlier.

public class MicrowaveSafeFactory implements

AbstractUtensilFactory{

public Utensil getPlate() {

return new Plate();

}

public Utensil getBowl() {

return new Bowl();

}}

public class NonMicrowaveSafeFactory implements

AbstractUtensilFactory{

public Utensil getPlate() {

return new Plate_MW ();

}

public Utensil getBowl() {

return new Bowl_MW();

}}

04/06/1445

17

 Finally, all code is in place and we need to use it. Because, we have two factories, we need to get the

appropriate factory first. Once we get the factory we can call the require methods from the factory .

Let’s create a class FactoryProducer which will provide the factory instance as per the requirement.

public class FactoryProducer {

 public static AbstractUtensilFactory getFactory(String choice){

 if("Microwave".equalsIgnoreCase(choice)){

 return new MicrowaveSafeFactory();

 }

 else if("Non-Microwave".equalsIgnoreCase(choice)){

 return new NonMicrowaveSafeFactory();

 }

 return null;

 }

}

 Now, we can start using the produces and factory classes where ever we need.

04/06/1445

18

BENEFITS AND LIMITATIONS OF ABSTRACT FACTORY DESIGN PATTERN

 Benefits of using abstract factory pattern

 Firstly, it helps to group related objects or functions

 Also, reduces errors of mixing of objects or functions from different groups

 Helps to abstract code so that user don’t need to worry about object creations

 Limitations

 Only useful when we have to group processes or objects

 Before getting object or calling the function we need to get the factory which adds one more

processes

 Adds more classes and abstraction hence code could become complex

CONCLUSION

 Software Design Pattern Descriptions of reusable solutions to common software design problems.

 Classification of design Pattern (Creational, Structural, behavioral).

 Factory Design Pattern

 Also, called as Factory Method pattern

 Most commonly used design pattern

 Further, enables to create objects by deciding the type of object at run time

 Then, helps to isolate the object creation logic to a single method

 This method can be further overridden by different classes

 Hence avoids repetition of code

 Abstract Factory Design Pattern

 Most important point, it is a type of ―Creational design pattern‖

 Mange different object types of same family

 Also known as ―Factory of factories‖

 It is different from the Factory pattern because it has multiple functions

04/06/1445

19

SOME BOOKS

 GOF: 23 ―classical‖ patterns:

QUESTIONS……

Good read about Design Patterns

 http://en.wikipedia.org/wiki/Design_pattern_(computer_science)

 http://sourcemaking.com/design_patterns

 http://java.sun.com/blueprints/patterns/index.html

 http://www.codeproject.com/KB/architecture/#Design Patterns

 http://msdn.microsoft.com/en-us/magazine/cc301852.aspx

 http://www.javacamp.org/designPattern/

 http://www.javaworld.com/channel_content/jw-patterns-index.html

 http://www.ibm.com/developerworks/java/tutorials/j-patterns201

http://www.ibm.com/developerworks/java/tutorials/j-patterns201
http://www.ibm.com/developerworks/java/tutorials/j-patterns201
http://www.ibm.com/developerworks/java/tutorials/j-patterns201
http://www.ibm.com/developerworks/java/tutorials/j-patterns201
http://www.ibm.com/developerworks/java/tutorials/j-patterns201
http://www.ibm.com/developerworks/java/tutorials/j-patterns201

