
04/06/1445

1

Presented By Mai Elbaabaa

Degrees
• 50 percent

• 50 percent – final examination

notes
• No postpones or make up midterm and final exam
• Assignments & project must be done and correctly turned in on time for

full credit - no exceptions, no extensions, no excuses.

35% Midterm All topics covered until the midterm date.

15%
Assignments

& project
Will explain the details later

04/06/1445

2

Virtual Classroom

• course materials, inquires or participations will be in classhub.

• Books as reference
• Introduction to Java Programming, By: Y. Daniel Liang.

• Gostling J., Java Language Specification, Addison-Wesley Professional,
2005.

• Eckel B., Thinking in Java, Prentice Hall, 2006.

• Schild H., Java 2: A Beginner's Guide, McGraw-Hill Professional, 2002.

• Online tutorials
• https://www.tutorialspoint.com/java_technology_tutorials.htm

• https://www.edureka.co/blog/advanced-java-tutorial/

Course content

• Review on OOP principles & UML class diagrams.

• Creational Patterns: Factory, Abstract Factory, Builder, Singleton and
Prototype design patterns.

• Structural design patterns: Adapter, Bridge, composition, decorator,
façade, Flyweight and proxy design patterns

• Behavioral Design Patterns: Observer, Strategy and command design
patterns.

• Anti Patterns.

https://www.tutorialspoint.com/java_technology_tutorials.htm

04/06/1445

3

Packages, Classes, Methods…
• A package is a collection of related classes. Moreover, every package

has a name.

• The term class is used to create Java programs; it is used to group a
set of related operations; and it is used to allow users to create their
own data types.

• method as a set of instructions designed to accomplish a specific task.

Class & Object

04/06/1445

4

Example

• Lets say that I want to create a class to define my location in a map

• First what do I need to represent my location:

• Latitude and longitude coordinators.

Constructor
• the constructor is a special method that gets called when my objects get

created. So when I ask Java to give me a new object of type SimpleLocation,
it's going to call this method here, which is called the constructor.

• And the reason you know it's the constructor, is that it doesn't have a return
type, so it simply says public and then next word in the declaration of this
method is just the name of the class.

• A constructor is automatically called on

object creation
• A default constructor provided by the

compiler initializes integer to 0, floating
point numbers to 0.0, Boolean values to
false and objects to null.

04/06/1445

5

Types of Variables

• There are three types of variables in Java:

1) Local Variable
• A variable declared inside the body of the method is called local variable. You

can use this variable only within that method

2) Instance Variable
• A variable declared inside the class but outside the body of the method,

3)Static variable
• A variable that is declared as static is called a static variable. It cannot be local.

You can create a single copy of the static variable and share it among all the
instances of the class.

04/06/1445

6

• We're comparing the distance between two SimpleLocation objects.

• the keyword, this refers to the calling object, which is the object that called
the method, or on which the method was called. So in this line of code,
ucsd dot distance and then pass in lima UCSD is called the calling object
because it's the object that occurs before that dot.

• The result of running the code is 6567.659 KM.

Overloading and overloading

Constructor Overloading

Method Overloading

04/06/1445

7

Public vs. Private

04/06/1445

8

Why didn't we just make that member variable public?

• let's say we want to allow the user to change the value of the
latitude. But we're little bit unsure that the user of our class will know
what they're doing

• rather than just blindly accepting whatever argument was passed in,
we would have some checks, some logic inside of that method that
said okay, if it's out of range of -180 to 180 then that's not a legal
value.

04/06/1445

9

Main Tenets of OO Programming

• Encapsulation
• abstraction, information hiding

• Inheritance
• code reuse, specialization "New code using old code."

• Polymorphism
• do X for a collection of various types of objects, where X is different

depending on the type of object

• "Old code using new code.“

• Abstraction

Things and Relationships

• Object oriented programming leads to programs that are
models
• sometimes models of things in the real world

• sometimes models of contrived or imaginary things

• There are many types of relationships between the things in
the models
• chess piece has a position

• chess piece has a color

• chess piece moves (changes position)

• chess piece is taken

• a rook is a type of chess piece

04/06/1445

10

The “has-A” Relationship

• Objects are often made up of many parts or have sub data.
• chess piece: position, color

• die: result, number of sides

• This “has-a” relationship is modeled by composition
• the instance variables or fields internal to objects

• Encapsulation captures this concept

19

The “is-a” relationship
• Another type of relationship found in the real world

• a rook is a chess piece

• a queen is a chess piece

• a student is a person

• a faculty member is a person

• an undergraduate student is a student

• “is-a” usually denotes some form of specialization

• it is not the same as “has-a”

04/06/1445

11

Inheritance

• The “is-a” relationship, and the
specialization that accompanies it, is
modeled in object oriented languages via
inheritance

• Classes can inherit from other classes
• base inheritance in a program on the real world

things being modeled

• does “an A is a B” make sense? Is it logical?

21

A

B

"is a"

increasingly
general

increasingly
specialized

Inheritance

• Person is said to be
• the (parent, super, base, ancestor) class of Student

• Student is said to be
• (a child, a sub, a derived, a descendant) class of Person

• the sub class inherits (gains) all instance variables and instance methods of the
super class, automatically

• additional methods can be added to class B (specialization)

• the sub class can replace (redefine, override) methods from the super class

04/06/1445

12

Polymorphism

• Another feature of OOP

• literally “having many forms”

• object variables in Java are polymorphic

• object variables can refer to objects or their declared type AND any objects that
are descendants of the declared type

 ClosedShape s = new ClosedShape();

s = new Rectangle(); // legal!

s = new Circle(); //legal!

 Object obj1; // = what?

23

Abstract Classes & Interfaces
The abstract Method and abstract class
 • An abstract method is a method with only signature (i.e., the method

name, the list of arguments and the return type) without
implementation (i.e., the method’s body). You use the keyword
abstract to declare an abstract method.

• For example, in the Shape class, we can declare abstract methods
getArea(), draw(), etc, as follows:

04/06/1445

13

Abstract Class EG. 1: Shape and its Subclasses

• To use an abstract
class, you have to
derive a subclass from
the abstract class. In
the derived subclass,
you have to override
the abstract methods
and provide
implementation to all
the abstract methods.

In summary
• an abstract class provides

a template for further
development. The
purpose of an abstract
class is to provide a
common interface (or
protocol, or contract, or
understanding, or naming
convention) to all its
subclasses. For example, in
the abstract class Shape,
you can define abstract
methods such as getArea()
and draw(). • An abstract method cannot be declared final, as final method cannot be overridden.

An abstract method, on the other hand, must be overridden in a descendant before it
can be used.

• An abstract method cannot be private (which generates a compilation error). This is
because private method are not visible to the subclass and thus cannot be override.

04/06/1445

14

What is interface in java

• Since multiple inheritance is not allowed in Java, interfaces only way to
implement multiple inheritance at Type level

• A Java interface is a 100% abstract superclass which define a set of
methods its subclasses must support

Interface EG. 1: Shape Interface and its Implementations
We can re-write the abstract superclass Shape into an interface, containing
only abstract methods, as follows:

04/06/1445

15

Interface EG. 2: Movable Interface

and its Implementations.

• Suppose that our application
involves many objects that can
move. We could define an interface
called movable, containing the
signatures of the various
movement methods

04/06/1445

16

• MovablePoint.java

• To derive subclasses from an
interface, a new keyboard
"implements" is to be used
instead of "extends" for
deriving subclasses from an
ordinary class or an abstract
class. It is important to note
that the subclass implementing
an interface need to override
ALL the abstract methods
defined in the interface;
otherwise, the subclass cannot
be compiled. For example,

• TestMovable.java

• We can also upcast subclass instances to the Movable interface, via
polymorphism, similar to an abstract class.

04/06/1445

17

 Implementing Multiple Interfaces

• As mentioned, Java supports only single inheritance. That is, a subclass can be
derived from one and only one superclass. Java does not support multiple
inheritance to avoid inheriting conflicting properties from multiple superclasses.
Multiple inheritance, however, does have its place in programming.

• A subclass, however, can implement more than one interfaces.
• In other words, Java indirectly supports multiple inheritances via implementing

multiple interfaces. For example,

interface Formal Syntax
• The formal syntax for declaring interface is:

All methods in an interface shall be public and abstract (default). You cannot use
other access modifier such as private, protected and default, or modifiers such
as static, final.
All fields shall be public, static and final (default).
An interface may "extends" from a super-interface.

04/06/1445

18

When to use Interface

• Interface is best choice for Type declaration or defining contract between
multiple parties In large projects, where many developers are involved,
different people write different module (functionalities). In order to make
sure that the code developed by one developer is easily integrated with the
code developed by another developer, both of them must agree on a set of
common notations (function names, argument lists, return values etc.).

• In case of java, this is achieved by specifying an Interface class. An Interface
is very similar to a class except that it only contains methods without any
implementation. An Interface can also contain constants (Final variables)

• abstraction, you can also use abstract class but choosing between Interface
in Java and abstract class is a skill.

Example

public class Main

{

 public static void main(String[] args) {

 shapeA circleshape=new circle();

 circleshape.Draw();

 circleshape.Draw();

}

}

04/06/1445

19

Conclusion

• Object Orientation supports the programmers by:

Assignment 1

• Use the same example of simple location in this presentation,
calculate the distance from your location to the IT college Tripoli
university location. And there is overloading or overriding in the code
show it and explain the differences between overloading and
overriding.

• Draw the UML diagram of the shape class example from slide 24 to
the end of movable classes 31.

