
جامعة طرابلس
كلية تقنية المعلومات

قواعد البيانات النقالة والغير متجانسة

Heterogeneous and Mobile Databases

ITMC322

محمد أوهيبة/ أستاذ المادة

السادسةالمحاضرة

2

Review of topics

• Using ranges in your queries
• Using logical operators to query data
• Updating documents
• Deleting data
• Beyond basic data types
- Arrays
- Embedded documents

• Some useful functions
• Securing database access

Dr Rudwan Ali A Abdullah, IT College Tripoli University DB1, ITG304

3

• queries will use some functions to restrict the range of the returned data, which is
done in most SQL dialects and languages with the > and < or = operators.

• The equivalent operators in MongoDB terms are $gt, $gte, $lt, and $lte. Here is
how to find users whose age is greater than 40 using the $gt operator:

> db.users.find({ age: { $gt: 40 } })

{ "_id" : ObjectId("5506d5988d7bd8471669e675"), "name" :

“Ahmed", "age" : 44, "phone" : “092-456-789" }

• The $gte operator, on the other hand, is able to select keys that are greater than or
equal (>=) to the one specified:

> db.users.find({ age: { $gte: 32 } })

{ "_id" : ObjectId("5506d5988d7bd8471669e675"), "name" :

“Ahmed", "age" : 44, "phone" : “092-456-789" }

{ "_id" : ObjectId("5506eea18d7bd8471669e676"), "name" :

“Ali", "age" : 32, "phone" : “091-444-333" }

Using ranges in your queries

4

• The $lt and $lte operators, on the other hand, allow you to select keys which are
smaller and smaller/equal to the value specified.

• With the $lt operator, it’s possible to search for values that are inferior to the
requested value in the query. The query db.products.find({price: {$lt: 20}})
will return:

Using ranges in your queries(Cont.)

5

• The $lte operator searches for values that are less than or equal to the requested
value in the query. If we execute the query
db.products.find({price: {$lte:20}}), it will return:

Using ranges in your queries(Cont..)

6

• The $in operator is able to search any document where the value of a field equals a
value that is specified in the requested array in the query. The execution of the query
db.products.find({price:{$in: [5, 10, 15]}}) will return:

Using ranges in your queries(Cont...)

7

• The $nin operator will match values that are not included in the specified array. The
execution of the db.products.find({price:{$nin: [10, 20]}}) query will
produce:

Using ranges in your queries(Cont....)

8

Using ranges in your queries(Cont.....)

• The $ne operator will match any values that are not equal to the specified value in the
query. The execution of the db.products.find({name: {$ne: "Product 1"}}) query will produce:

9

• Logical operators are how we define the logic between values in MongoDB.
• These are derived from Boolean algebra, and the truth value of a Boolean value can

be either true or false.
• The logical operators in MongoDB:

• The $and operator will make a logical AND operation in an expressions array, and
will return the values that match all the specified criteria.
The execution of the db.products.find({$and: [{price: {$lt: 30}}, {name: "Product 2"}]})
query will produce:

Using logical operators to query data

10

The $or operator will make a logical OR operation in an expressions array, and will
return all the values that match either of the specified criteria. The execution of the
db.products.find({$or: [{price: {$gt: 50}}, {name: "Product 3"}]}) query will produce:

Using logical operators to query data (Cont.)

11

• The $not operator inverts the query effect and returns the values that do not match
the specified operator expression. It is used to negate any operation. The execution of
the db.products.find({price: {$not: {$gt: 10}}}) query will produce:

Using logical operators to query data (Cont..)

12

• The $nor operator will make a logical NOR operation in an expressions array, and
will return all the values that fail to match all the specified expressions in the array.
The execution of the db.products.find({$nor:[{price:{$gt: 35}}, {price: {$lte: 20}}]})
query will produce:

Using logical operators to query data (Cont...)

13

• In order to update an existing document, you need to provide two arguments:
• The document to update .
• How the selected documents should be modified .

• Example : supposing that you wanted to change the key age for the user Ali to be 39:

> db.users.update({name: "owen"}, {$set: {"age": 39}})

WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

• The outcome of the statement informs us that the update matched one document which
was modified. A find issued on the users collection reveals that the change has been
applied:

> db.users.find()

{ "_id" : ObjectId("5506d5988d7bd8471669e675"), "name" : “Ahmed",

"age" : 44, "phone" : “092-456-789" }

{ "_id" : ObjectId("5506eea18d7bd8471669e676"), "name" : “Ali",

"age" : 39, "phone" : “091-444-333" }

Updating documents

Be aware that executing an update without the $set

operator won't update the fields but replace the whole
document, while preserving the _id field.

14

• The update supports an additional option, which can be used to perform a more
complex logic. For example, what if you wanted to update the record if it exists, and
create it if it doesn't? This is called upsert and can be achieved by setting the upsert
option to true, as in the following command line:

> db.users.update({user: "frank"}, {age: 40},{ upsert: true})

WriteResult({

"nMatched" : 0,

"nUpserted" : 1,

"nModified" : 0,

"_id" : ObjectId("55082f5ea30be312eb167fcb")

})

• As you can see from the output, an upsert has been executed and a document with
the age key has been added:

> db.users.find()

{ "_id" : ObjectId("5506d5988d7bd8471669e675"), "name" : “Ahmed",

"age" : 44, "phone" : “092-456-789" }

{ "_id" : ObjectId("5506eea18d7bd8471669e676"), "name" : “Ali",

"age" : 39, "phone" : “091-444-333" }

{ "_id" : ObjectId("55082f5ea30be312eb167fcb"), "age" : 40 }

Updating documents (Cont.)

15

• you can remove a single key from your collection by using the $unset option.

db.users.update({name: “Ali"}, {$unset : { "age" : 1} })

WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

• Executing the find on our collection confirms the update:
> db.users.find()

{ "_id" : ObjectId("5506d5988d7bd8471669e675"), "name" : “Ahmed",

"age" : 44, "phone" : “092-456-789" }

{ "_id" : ObjectId("5506eea18d7bd8471669e676"), "name" : “Ali",

"phone" : “091-444-333" }

{ "_id" : ObjectId("55082f5ea30be312eb167fcb"), "age" : 40 }

• The opposite of the $unset operator is $push, which allows you to append a value
to a specified field. So here is how you can restore the age key for the user owen:

> db.users.update({name: “Ali"}, {$push : { "age" : 39} })

WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

Updating documents (Cont..)

16

• To delete a whole set of documents, then you can use the remove operator. When
used without any parameter, it is equivalent to the TRUNCATE command in SQL
terms:

> db.users.remove()

• To be more selective when deleting documents as you might need to remove just a
set of documents matching one or more conditions. For example, here is how to
remove users older than 40:

> db.users.remove({ "age": { $gt: 40 } })

WriteResult({ "nRemoved" : 1 })

• Just like the TRUNCATE statement in SQL, it just removes documents from a
collection. If you want to delete the collection, then you need to use the drop()
method, which deletes the whole collection structure, including any associated index:

> db.users.drop()

Deleting data

17

• Although the basic data types we have used so far will be fine for most use cases, there
are a couple of additional types that are crucial to most applications, especially when
mapping Mongo types to a language driver such as a Mongo driver for Java.

• Arrays
MongoDB has a rich query language that supports storing and accessing documents
as arrays. One of the great things about arrays in documents is that MongoDB
understands their structure and knows how to reach inside arrays to perform
operations on their content.
• creating a couple of documents containing an array of items:

> db.restaurant.insert({"menu" : ["bread", "pizza", "coke"]})

WriteResult({ "nInserted" : 1 })

> db.restaurant.insert({"menu" : ["bread", "omelette", "sprite"]})

WriteResult({ "nInserted" : 1 })

• query on the array selection to find the menu, which includes pizza:
> db.restaurant.find({"menu" : "pizza"})

{ "_id" : ObjectId("550abbfe89ef057ee0671650"), "menu" : [

"bread","pizza", "coke"] }

Beyond basic data types

18

• to match arrays using more than one element, then you can use $all.
•
> db.restaurant.find({"menu" : {$all : ["pizza", "coke"]}})

{ "_id" : ObjectId("550abbfe89ef057ee0671650"), "menu" : [

"bread", "pizza", "coke"] }

• Embedded documents

• You can use a document as a value for a key. This is called an embedded document.

• Embedded documents can be used to organize data in a more natural way than just a
flat structure of key-value pairs. This matches well with most object-oriented
languages, which holds a reference to another structure in their class.

Beyond basic data types (Cont.)

19

• defining a structure, which is assigned to a variable in the mongo shell:
x = {

"_id":1234,

"owner":"Frank's Car",

"cars":[

{

"year":2011,

"model":"Ferrari",

price:250000

},

{

"year":2013,

"model":"Porsche",

price:250000

}

]

}

• Since the Mongo shell is a JavaScript interface, it is perfectly fine to write something
like the preceding code and even use functions in order to enhance objects in the
shell. Having defined our variable, we can insert it into the cars collection as
follows: > db.cars.insert(x);

WriteResult({ "nInserted" : 1 })

Beyond basic data types (Cont..)

20

• We can query our subdocument by using the dot notation. For example, we can
choose the list of cars whose model is Ferrari by using the cars.model criteria:

> db.cars.find({ "cars.model": "Ferrari" }).pretty()

{

"_id" : 1234,

"owner" : "Frank's Car",

"cars" : [

{

"year" : 2011,

"model" : "Ferrari",

"price" : 250000

},

{

"year" : 2013,

"model" : "Porsche",

"price" : 250000

}

]

}

Beyond basic data types (Cont...)

21

• You can use the limit function to specify the maximum number of documents
returned by your query.

• By setting this parameter to 0, all the documents will be returned:

> db.users.find().limit(10)

• The sort function, on the other hand, can be used to sort the results returned from
the query in ascending (1) or descending (-1) order.

• This function is pretty much equivalent to the ORDER BY statement in SQL.

> db.users.find({}).sort({"name":1})

{ "_id" : ObjectId("5506d5708d7bd8471669e674"), "name" : “Ahmed",

"age" : 44, "phone" : “092-456-789" }

{ "_id" : ObjectId("550ad3ef89ef057ee0671652"), "name" : “Ali",

"age" : 32, "phone" : “091-444-333" }

Some useful functions

22

• the skip function, which skips the first n documents in a collection. For example,
here is how to skip the first document in a search across the users collection:

> db.users.find().skip(1)

{ "_id" : ObjectId("550ad3ef89ef057ee0671652"), "name" : “Ali",

"age" : 32, "phone" : “091-444-333" }

Some useful functions

23

• Actually, starting mongod without any additional option exposes the database to any
user who is aware of the process.

• We will show how to provide secure access by means of the mongo shell. So, launch
the mongo shell and connect to the admin database, which holds information about
the users:
use admin

• let's use the createUser function to add a user named administrator with the
password mypassword and grant unlimited privileges (the role root):
db.createUser(

{

user: "administrator",

pwd: "mypassword",

roles: ["root"]

}

)

• Now, shut down the server by using the following command:
db.shutdownServer()

• We will restart the database using the –-auth option, which forces user
authentication:

mongod --dbpath "C:\mongodb-win32-x86_64-3.0.3\data" --auth

Securing database access

24

• Now, the database is started in secure mode. You can connect from the mongo shell
in two different ways.

• The first one should be used with caution on Linux/Unix systems, as it exposes the
user/password in the process list:

mongo -u administrator -p mypassword --authenticationDatabase

admin

• As an alternative, you can start the mongo shell and authenticate it at the beginning
of the session (you need to select the admin database at first as the authentication
keys are stored on the admin DB):

use admin

db.auth('admin','mypassword')

use yourdb

….

Securing database access

25

• MongoDB for Java Developers_ Design, build, and deliver efficient Java

applications using the most advanced NoSQL database.

Francesco Marchioni

Copyright © 2015 Packt Publishing

• MongoDB Data Modeling Wilson da Rocha França

Copyright © 2015 Packt Publishing

Reference Book

The End

Thanks for listening ..

Any questions ?

