
جامعة طرابلس
كلية تقنية المعلومات

قواعد البيانات النقالة والغير متجانسة

Heterogeneous and Mobile Databases

ITMC322

محمد أوهيبة/ أستاذ المادة

المحاضرة الخامسة

2

Review of topics

• The heart of MongoDB – the document
• Understanding how MongoDB stores data
• Data types accepted in documents
• Installing and starting MongoDB
- MongoDB start up options

• Introduction to the MongoDB shell
- Inserting documents
- Querying documents
- Choosing the keys to return

Dr Rudwan Ali A Abdullah, IT College Tripoli University DB1, ITG304

3

• The document, an ordered set of keys with associated values.

• The representation of a document varies by the programming language, but most
languages have a data structure that is a natural fit, such as a map, hash, or
dictionary. Here is a very basic example of a document, which is understood by
MongoDB:

{"name" : “Ahmed",

"age" : 44,

"phone":“092-567-890"}

• Most documents will be more complex than this simple one and will often contain
embedded data within them. These denormalized data models allow applications to
retrieve and manipulate related data in a single database operation:

{"name" : " Ahmed ",

"age" : 44,

"contact" : {

"phone":" 092-567-890"

}

}

• we have included the contact information within the same document by using an
embedded document with a single key named contact.

The heart of MongoDB – the document

4

• Each document requires a key, which needs to be unique within a document.

• The keys contained in a document are strings. Any UTF-8 character can be included
in a key, with a few exceptions:

• You cannot include the character \0 (also known as the null character) in a key. This
character is used to indicate the end of a key.

• The . and $ characters are internally used by the database so they should be used
only in limited cases. As a general rule, it is better to completely avoid using these
characters as most MongoDB drivers can generate exceptions when they are used
inappropriately.

• MongoDB is both type-sensitive and case-sensitive. For example, these documents
are distinct:

{"age" : 18}

{"age" : "18"}

• The same applies to the following documents:
{"age" : 18}

{"Age" : 18}

The heart of MongoDB the document (Cont.)

5

• JavaScript Object Notation (JSON). JSON is a human and machine-readable open
standard that simplifies data interchange and is also one of the most used formats for
data interchange in applications along with XML.

• JSON is able to deal with all the basic data types used by applications such as String,
numbers, Boolean values, as well as arrays and hashes.

• MongoDB is able to store JSON documents into its collections to store records. Let's
see an example of a JSON document:

• A JSON-based database returns a set of data that can be easily parsed by most
programming languages such as Java, Python, JavaScript, and others, reducing the
amount of code you need to build into your application layer.

Understanding how MongoDB stores data

6

• MongoDB represents JSON documents using a binary-encoded format called BSON.

• MongoDB stores documents (objects) in a format called BSON. BSON is a binary
serialization of JSON-like documents. BSON stands for “Binary JSON”, but
also contains extensions that allow representation of data types that are not part of
JSON. For example, BSON has a Date data type and BinData type.

• Documents encoded with BSON enhance the JSON data model to provide additional
data types and efficiency when encoding/decoding data within different languages.

• MongoDB uses a fast and lightweight BSON implementation, which is highly
traversable and supports complex structures such as embedded objects and arrays.

Understanding how MongoDB stores data

(Cont.)

http://bsonspec.org/
http://json.org/

7

BSON was designed to have the following three characteristics:
1. Lightweight
Keeping spatial overhead to a minimum is important for any data representation
format, especially when used over the network.
2. Traversable
BSON is designed to be traversed easily. This is a vital property in its role as the
primary data representation for MongoDB.
3. Efficient
Encoding data to BSON and decoding from BSON can be performed very quickly in
most languages due to the use of C data types.

Understanding how MongoDB stores data

(Cont.)

http://www.mongodb.org/

8

• MongoDB offers a wide choice of data types, which can be used in your documents:

Data types accepted in documents

• String: This is the most common data type as it contains a string of text (such as: "name": "John").
• Integer (32 bit and 64-bit): This type is used to store a numerical value (for example, "age" : 40).
Note that an Integer requires no quotes to be placed before or after the Integer.
• Boolean: This data type can be used to store either a TRUE or a FALSE value.
• Double: This data type is used to store floating-point values.
• Min/Max keys: This data type is used to compare a value against the lowest and highest BSON
elements, respectively.
• Arrays: This type is used to store arrays or list or multiple values into one key (for example, ["John,
Smith","Mark, Spencer"]).
• Timestamp: This data type is used to store a timestamp. This can be useful to store when a document
has been last modified or created.
• Object: This data type is used for storing embedded documents.
• Null: This data type is used for a null value.
• Symbol: This data type allows storing characters such as String; however, it's generally used by
languages that use a specific symbol type.
• Date: This data type allows storing the current date or time in the Unix time format (POSIX time).
• Object ID: This data type is used to store the document's ID.
• Binary data: This data type is used to store a binary set of data.
• Regular expression: This data type is used for regular expressions. All options are represented by
specific characters provided in alphabetical order. we will learn more about regular expressions.
• JavaScript code: This data type is used for JavaScript code.

9

• Installing Mongo DB is much easier than most RDBMS as it's just a matter of
unzipping the archived database and, if necessary, configure a new path for data
storage.

• Installing MongoDB on Windows

• For installing MongoDB on Windows, perform the following steps:
Download the latest stable release of MongoDB from http://www.mongodb.
org/downloads. (At the time of writing, the latest stable release is 3.0.3, which is
available as Microsoft Installer or as a ZIP file). Ensure you download the correct
version of MongoDB for your Windows system.

• Execute the MSI Installer, or if you have downloaded MongoDB as a ZIP file, simply
extract the downloaded file to C:\drive or any other location.

• MongoDB requires a data directory to store its files. The default location for the
MongoDB data folder on Windows is c:\data\db. Execute the following command
from the command prompt to create the default folder:
C:\mongodb-win32-x86_64-3.0.3>md data

Installing and starting MongoDB

10

• Installing MongoDB on Windows

• In Command Prompt, navigate to the bin directory present in the mongodb
installation folder and point to the folder where data is stored:
C:\mongodb-win32-x86_64-3.0.3\bin> mongod.exe --dbpath

"C:\mongodb-win32-x86_64-3.0.3\data“

• This will show the waiting for the connections message on the console
output, which indicates that the mongod.exe process is running successfully.

Installing and starting MongoDB

11

• The list of start up options, which can be applied to the mongod server is quite large
and is detailed at http://docs.mongodb.org/manual/reference/program/
mongod/.

• The following table summarizes the most common options for a handy reference:

MongoDB start up options

12

• The list of start up options, which can be applied to the mongod server is quite large
and is detailed at http://docs.mongodb.org/manual/reference/program/
mongod/.

• The following table summarizes the most common options for a handy reference:

MongoDB start up options (Cont.)

13

• MongoDB ships with a set of shell commands, which can be useful to administrate
your server.

• an initial introduction to the server administration:

• bsondump: This displays BSON files in a human-readable format
• mongoimport: This converts data from JSON, TSV, or CSV and stores them into a

collection

• mongoexport: This writes an existing collection using the CSV or JSON formats
• mongodump/mongorestore: This dumps MongoDB data to disk using the BSON

format (mongodump), or restores them (mongorestore) to a live database
• mongostat: This monitors running MongoDB servers, replica sets, or clusters
• mongofiles: This reads, writes, deletes, or updates files in GridFS
• mongooplog: This replays oplog entries between MongoDB servers
• mongotop: This monitors data reading/writing on a running Mongo server

• an example of how to use the mongoimport tool to import a CSV-formatted data
contained in /var/data/users.csv into the collection users in the sample
database on the MongoDB instance running on the localhost port numbered 27017:

• mongoimport --db sample --collection users --type csv --

headerline --file /var/data/users.csv

Mongo tools

14

• If you want to export the MongoDB documents, you can use the mongoexport tool.
Let's look at an example of how to export the collection users (part of the sampled
database), limited to the first 100 records:

• mongoexport --db sampledb --collection users --limit 100 --out

export. Json

• As part of your daily backup strategy, you should consider using the mongodump
tool, which is a utility for creating a binary export of the contents of a database.

• The following command creates a database dump for the collection named users
contained in the database named sampled. In this case, the database is running on
the local interface on port 27017:
mongodump --db test --collection users

• The preceding command will create a BSON binary file named users.bson and a
JSON file named users.metadata.json containing the documents. The files will
be created under dump/[database-name].

Mongo tools (Cont.)

15

• MongoDB ships with a JavaScript shell that allows interaction with a MongoDB
instance from the command line. The shell is the bread-and-butter tool for
performing administrative functions, monitoring a running instance, or just inserting
documents.

• To start the shell, run the mongo executable:
$ mongo

MongoDB shell version: 3.0.3

connecting to: test

• The shell automatically attempts to connect to a running MongoDB server on startup,
so make sure you start mongod before starting the shell.

• If no other database is specified on startup, the shell selects a default database called
test.

• let's start by switching to the sampledb database:
> use sampledb

switched to db sampled

• If you want to check the list of available databases, then you can use the show dbs
command:
>show dbs

local 0.78125GB

test 0.23012GB

Introduction to the MongoDB shell

16

• Inserting documents

• MongoDB documents can be specified in the JSON format. For example, let's recall
the simple document that we have already introduced:

{"name" : “Ahmed",

"age" : 44,

"phone":“092-567-890"

}

• In order to insert this document, you need to choose a collection where the document
will be stored. Here's how you can do it with the Mongo shell:

db.users.insert({"name": “Ahmed","age": 44, "phone": “092-567-

890"})

• As for databases, collections can be created dynamically by specifying it into the
insert statement.

Introduction to the MongoDB shell (Cont.)

17

• Querying documents

• The find method is used to perform queries in MongoDB. If no argument is given
to the find method, it will return all the documents contained in the collection as in
the following statement:

• > db.users.find()

• The response will look something like this:

{ "_id" : ObjectId("5506d5988d7bd8471669e675"), "name" : “Ahmed",

"age" : 44, "phone" : “092-456-789" }

• The _id field has been added to the document. This is a special key that works like a
primary key.

• Every MongoDB document requires a unique identifier and if you don't provide one
in your document, then a special MongoDB ID will be generated and added to the
document at that time.

Introduction to the MongoDB shell (Cont..)

18

• Querying documents

• Now, let's include another user in our collections so that we can refine our searches:
> db.users.insert({"name": “Ali","age": 32, "phone": “091-444-

333"})

• Your collection should now include two documents, as verified by the count
function:
> db.users.count()

2
• Having two documents in our collection, we will learn how to add a query selector to

our find statement so that we filter users based on a key value. For example, here is
how to find a user whose name is Ali:
> db.users.find({"name": “Ali"})

{ "_id" : ObjectId("5506eea18d7bd8471669e676"), "name" :

“Ali", "age" : 32, "phone" : “091-444-333" }

Introduction to the MongoDB shell (Cont…)

19

• Querying documents

• Multiple conditions can be specified within a query, just like you would do with a
WHERE – AND construct in SQL:

> db.users.find({"name": “Ali", "age": 32})

{ "_id" : ObjectId("5506eea18d7bd8471669e676"), "name" :

“Ali", "age" : 32, "phone" : “091-444-333" }

Introduction to the MongoDB shell (Cont…)

20

• Choosing the keys to return
• The queries mentioned earlier are equivalent to a SELECT * statement in SQL terms.

• You can use a projection to select a subset of fields to return from each document in a query
result set.

• This can be especially useful when you are selecting large documents, as it will reduce the costs
of network latency and deserialization.

• Projections are commonly activated by means of binary operators (0,1); the binary operator 0
means that the key must not be included in the search whilst 1 obviously means that the key has
to be included.

• an example of how to include the name and age keys in the fields to be returned (along with
the id field, which is always included by default:
> db.users.find({}, {"name": 1,"age": 1})

{ "_id" : ObjectId("5506d5988d7bd8471669e675"), "name" : “Ahmed", "age" : 44 }

{ "_id" : ObjectId("5506eea18d7bd8471669e676"), "name" : “Ali", "age" : 32 }

• By setting the projection values for the name and age to 0, the phone number is returned
instead:

> db.users.find({}, {"name": 0,"age": 0})

{ "_id" : ObjectId("5506d5988d7bd8471669e675"), "phone" : “092-456-789" }

{ "_id" : ObjectId("5506eea18d7bd8471669e676"), "phone" : “091-444-333" }

Introduction to the MongoDB shell (Cont.…)

21

• MongoDB for Java Developers_ Design, build, and deliver efficient Java

applications using the most advanced NoSQL database.

Francesco Marchioni

Copyright © 2015 Packt Publishing

Reference Book

The End

Thanks for listening ..

Any questions ?

