
جامعة طرابلس
كلية تقنية المعلومات

قواعد البيانات النقالة والغير متجانسة

Heterogeneous and Mobile Databases

ITMC322

محمد أوهيبة/ أستاذ المادة

الرابعةالمحاضرة

2

Review of topics

•Getting into the NoSQL movement
-Introduction
-Comparing RDBMS and NoSQL databases
-Transactions in both RDBMS and NON RDBMS
-Managing read-write concurrency
- MongoDB core elements

Dr Rudwan Ali A Abdullah, IT College Tripoli University DB1, ITG304

3

Introduction

• NoSQL is a generic term used to refer to any data store that

does not follow the traditional RDBMS model.

•the data is nonrelational and it generally does not use SQL as a

query language.

•

•Most of the databases that are categorized as NoSQL focus on

availability and scalability in spite of atomicity or consistency

Getting into the NoSQL movement

4

all databases that fall into this category have some characteristics
in common such as:

•Storing data in many formats: Almost all RDBMS databases

are based on the storage or rows in tables. NoSQL databases, on

the other hand, can use different formats such as document

stores, graph databases, key-value stores and even more.

Joinless: NoSQL databases are able to extract your data using

simple document-oriented interfaces without using SQL joins.

Schemaless data representation: A characteristic of NoSQL

implementations is that they are based on a schemaless data

representation. you don't need to define a data structure

beforehand, which can thus continue to change over time.

Getting into the NoSQL movement (Cont.)

5

•Ability to work with many machines: Most NoSQL systems buy

you the ability to store your database on multiple machines while

maintaining high-speed performance.

database transactions should be:

• Atomicity: Everything in a transaction either succeeds or is

rolled back

• Consistency: Every transaction must leave the database in a

consistent state

• Isolation: Each transaction that is running cannot interfere with

other transactions

• Durability: A completed transaction gets persisted, even after

applications restart

Getting into the NoSQL movement (Cont.)

6

Essential requirements when designing applications for distributed

architectures :

Consistency: This means the database mostly remains adherent

to its rules (constraints, triggers, and so on) after the execution of

each operation and that any future transaction will see the effects

of the earlier transactions committed. For example, after executing

an update, all the clients see the same data.

Availability: Each operation is guaranteed a response—a

successful or failed execution. This, in practice, means no

downtime.

Getting into the NoSQL movement (Cont.)

7

Partition tolerance: This means the system continues to function

even if the communication among the servers is temporarily

unreliable (for example, the servers involved in the transaction

may be partitioned into multiple groups, which cannot

communicate with one another).

In practice, as it is theoretically impossible to have all three

requirements met, a combination of two must be chosen and this

is usually the deciding factor in what technology is used, as shown

in the following figure:

Getting into the NoSQL movement (Cont.)

8

Getting into the NoSQL movement (Cont.)

9

Getting into the NoSQL movement (Cont.)

•If you are designing a typical web application that uses a SQL

database, most likely, you are in the CA part of the diagram. This is

because a traditional RDBMS is typically transaction-based (C) and

it can be highly available (A). However, it cannot be Partition

Tolerance (P) because SQL databases tend to run on single nodes.

•MongoDB, on the other hand, is consistent by default (C). This

means if you perform a write on the database followed by a read,

you will be able to read the same data (assuming that the write was

successful).

Besides consistency, MongoDB leverages Partition Tolerance (P)

by means of replica sets. In a replica set, there exists a single

primary node that accepts writes, and asynchronously replicates a

log of its operations to other secondary databases.

10

Getting into the NoSQL movement (Cont.)

•However, not all NoSQL databases are built with the same focus.

An example of this is CouchDB. Just like MongoDB, it is document

oriented and has been built to scale across multiple nodes easily;

on the other hand, while MongoDB (CP) favors consistency,

CouchDB favors availability (AP) in spite of consistency.

•The following table summarizes the most common NoSQL

databases and their position relative to CAP attributes:

11

12

Comparing RDBMS and NoSQL databases

•we can identify a set of pros and cons related to each technology.

This can lead to a better understanding of which one is most fit for

our scenarios. Let's start from traditional RDBMS:.

13

Comparing RDBMS and NoSQL databases
The following is a table that contains the advantages and

disadvantages of NoSQL databases:

14

Transactions in both RDBMS and NON RDBMS

•With an RDBMS, you can update the database in sophisticated

ways using SQL and wrap multiple statements in a transaction to

get atomicity and rollback. MongoDB doesn't support transactions.

This is a solid tradeoff based on MongoDB's goal of being simple,

fast, and scalable. MongoDB, however, supports a range of atomic

update operations that can work on the internal structures of a

complex document. So, for example, by including multiple

structures within one document (such as arrays), you can achieve

an update in a single atomic way, just like you would do with an

ordinary transaction.

15

Transactions in both RDBMS and NON RDBMS

• Application's requirements can be met via document updates

(also by using nested documents to provide an atomic update),

then this is a perfect use case for MongoDB, which will allow a

much easier horizontal scaling of your application.

On the other hand, if strict transaction semantics (such as a

banking application) are required, then nothing can beat a

relational database. In some scenarios, you can combine both

approaches (RDBMS and MongoDB) to get the best of both worlds,

at the price of a more complex infrastructure to maintain. Such

hybrid solutions are quite common; however, you can see them in

production apps such as the New York Times website.

16

Managing read-write concurrency

•In RDBMS, managing the execution of concurrent work units is a

fundamental concept. The underlying implementation of each

database uses behind the scenes locks or Multiversion control to

provide the isolation of each work unit. On the other hand,

MongoDB uses reader/writer locks that allow concurrent readers

shared access to a resource, such as a database or collection, but

give exclusive access to a single write operation. In more detail

here is how MongoDB handles read and write locks:

• There can be an unlimited number of simultaneous readers on a

database

• There can only be one writer at a time on any collection in any

one database

• The writers block out the readers once a write request comes in;

all the readers are blocked until the write completes (which is also

known as writer-greedy)

17

MongoDB core elements
•The core elements the database is composed of. Actually, MongoDB is

organized with a set of building blocks, which include the following:

•Database: This is, just like for the database, the top-level element. However, a

relational database contains (mostly) tables and views. A Mongo Database, on

the other hand, is a physical container of a structure called a collection.

•Collection: This is a set of MongoDB documents. A collection is the equivalent

of an RDBMS table. There can be only one collection with that name on the

database but obviously multiple collections can coexist in a database.

•Documents: This is the most basic unit of data in MongoDB. Basically, it is

composed by a set of key-value pairs. Unlike database records, documents have

a dynamic schema, which means documents that are part of the same collection

do not need to have the same set of fields.

18

MongoDB core elements
The following diagram summarizes the concepts

The End

Thanks for listening ..

Any questions ?

