2021-03-30

Chapter five OpenGL Part |

* Introduction

* Languages and Libraires
* OpenGL Requirements
* Summery

88

Introduction

* Graphics programming has a reputation
for being among the most challenging
computer science topics to learn.

* These days, graphics programming is
shader based—that is, some of the
program is written in a standard
language such as C++ or Java for running
on the CPU and some is written in a
special-purpose shader language for
running directly on the graphics card
(GPU).

intel.

IRISxe

MAX
Gonemicel

89

2021-03-30

Introduction-cont.

* Shader programming has a steep
learning curve, so that even drawing
something simple requires a convoluted
set of steps to pass graphics data down a
“pipeline.”

* Modern graphics cards are able to
process this data in parallel, and so the
graphics programmer must understand
the parallel architecture of the GPU, even
when drawing simple shapes.

<

NVIDIA.

90

Languages and Libraires

* Modern graphics programming is done
using a graphics library. That is, the
programmer writes code which invokes
functions in a predefined library (or set
of libraries) that provide support for
lower-level graphical operations.

* There are many graphics libraries in use
today, but the most common library for
platform independent graphics
programming is called OpenGL (Open
Graphics Library).

penGL.

ES

penGL

91

2021-03-30

Languages and Libraires-cont.

* OpenGL (Open Graphics Library) is a cross-
language, cross-platform application display
programming interface (API) for rendering monitor
2D and 3D vector graphics.

* The APl is typically used to interact with a
graphics processing unit (GPU), to achieve
hardware-accelerated rendering.
programmer

* There are many graphics libraries in use
today, but the most common library for
platform independent graphics - . 5l o
programming is called OpenGL (Open code
Graphics Library).

end user

CPU

C++ application
with OpenGL calls

: installs

92

OpenGL Requirements

* Using OpenGL with C++ requires configuring several libraries. We will
need languages and libraries for the following functions:
* C++ development environment
* OpenGL / GLSL

* Window management -— o
* Extension library m= ¢
* Math library -

* Texture management R ¢

93

2021-03-30

C++ development environment

* C++is a general-purpose programming
language that first appeared in the mid-1980s.

* Its design, and the fact that it is generally
compiled to native machine code, make it an
excellent choice for systems that require high
performance, such as 3D graphics computing.

* Another advantage of C++ is that the OpenGL
call library is C based. Many C++ development
environments are available.

* We recommend using Microsoft Visual Studio
if using a PC, and Xcode if using a Macintosh

OpenGL / GLSL

* Version 1.0 of OpenGL appeared in 1992 as an “open” alternative to vendor
specific Application Programming Interfaces (APls) for computer graphics.

* Its specification and development was managed and controlled by the OpenGL
Architecture Review Board (ARB), a then newly formed group of industry

participants.

* In 2006 the ARB transferred control of the OpenGL specification to the Khronos
Group, a nonprofit consortium which manages not only the OpenGL specification

but a wide variety of other open industry standards.

KHR

R

O

®

2021-03-30

OpenGL / GLSL-cont.

* In 2004, version 2.0 introduced the
OpenGL Shading Language gGLSL),
allowing “shader programs” to be
installed and run directly in graphics
pipeline stages.

* In 2009, version 3.1 removed a large
number of features that had been
deprecated, to enforce the use of
shader programming as opposed to
earlier approaches (referred to as
“immediate mode”). Among the
more recent features, version 4.0 (in
2010) added a tessellation stage to
the programmable pipeline.

Window management

* OpenGL doesn’t actually draw to a computer screen. Rather, it
renders to a frame buffer, and it is the job of the individual machine
to then draw the contents of the frame buffer onto a window on the
screen.

* There are various libraries that support doing this. One option is to
use the windowing capabilities provided by the operating system,
such as the Microsoft Windows API. This is generally impractical and
requires a lot of low-level coding.

* GLUT is a historically popular option; however, it is deprecated. A
modernized extension is freeglut. Other related options are CPW,
GLOW, and GLUI. But we will use the latest GLFW.

97

2021-03-30

Extension Library

* OpenGL is organized around a set of base functions and an extension
mechanism used to support new functionality as technologies advance.

* Modern versions of OpenGL, such as those found in version 4+, require
identifying the extensions available on the GPU.

* There are commands built into core OpenGL for doing this, but they involve
several rather convoluted lines of code that would need to be performed
for each modern command used—and in this book we use such commands
constantly.

* Therefore, it has become standard practice to use an extension library to
take care of these details, and to make modern OpenGL commands
available to the programmer directly. Examples are Glee, GLLoader, GLEW,
and more recently GL3W and GLAD.

98

Math Library

* 3D graphics programming makes heavy use of vector and
matrix algebra. For this reason, use of OpenGL is greatly
facilitated by accompanying it with a function library or
class package to support common mathematical tasks.

* Arguably the most popular, and the one used in this
book, is OpenGL Mathematics, usually called GLM.

* GLM provides classes and basic math functions related
to graphics concepts, such as vector, matrix, and
guaternion. It also contains a variety of utility classes for
creating and using common 3D graphics structures, such
as perspective and look-at matrices.

+[-
B

2021-03-30

Texture Management

* Using image files to add “texture” to the objects in a graphics scenes,
means that we will frequently need to load such image files into our
C++/0OpenGL code.

* |t is possible to code a texture image loader from scratch; however,
given the wide variety of image file formats, it is generally preferable
to use a texture loading library.

* Some examples are Freelmage, DeviL, OpenGL Image (GLI), and
Glraw. Probably the most commonly used OpenGL image loading
library is Simple OpenGL Image Loader (SOIL), although it has become
somewhat outdated.

100

Summery

* OpenGL is cross-platform API
* GLSL is the shading language for OpenGL
* Khronos Group, a nonprofit consortium which the OpenGL

* GLFW is an Open Source, multi-platform library for OpenGL, OpenGL
ES and Vulkan development on the desktop.

* The OpenGL Extension Wrangler Library (GLEW) is a cross-platform
open-source C/C++ extension loading library

* OpenGL Mathematics (GLM) is a header only C++ mathematics library
for graphics software based on the OpenGL Shading Language (GLSL)
specifications.

101

2021-03-30

Chapter 6 Ray Tracing

* Introduction

* History

* Another Definition

* The Basic Ray-Tracing Algorithm
* Perspective

* Computing Viewing Rays

* Parallel vs Perspective

* Ray - Object Intersection

102

Introduction

* In 3D computer graphics, ray tracing is a
rendering technique for generating an
image by tracing the path of light as pixels
in an image plane and simulating the
effects of its encounters with virtual
objects.

* The technique is capable of producing a
high degree of visual realism, more so than
typical scanline rendering methods but at a
greater computational cost.

103

2021-03-30

Introduction-cont.

* Ray tracing is capable of simulating a variety
of optical effects, such as reflection and
refraction, scattering, and dispersion
phenomena (such as chromatic aberration).

* It can also be used to trace the path of sound
waves in a similar fashion to light waves,
making it a viable option for more immersive
sound design in video games by rendering
realistic reverberation and echoes

* In fact, any physical wave or particle
phenomenon with approximately linear
motion can be simulated with these
techniques.

104

History

* The idea of ray tracing comes from as early as
the 16th century when it was described by
Albrecht Direr, who is credited for its
invention.

* He described an apparatus called a Diirer's
door using a thread attached to the end of a
stylus that an assistant moves along the
contours of the object to draw.

* The thread passes through the door's frame
and then through a hook on the wall. The
thread forms a ray and the hook acts as the
center of projection and corresponds to the
camera position in raytracing.

105

2021-03-30

History-cont.

* The idea of ray tracing comes from as early as
the 16th century when it was described by
Albrecht Diirer, who is credited for its
invention.

* He described an apparatus called a Direr's
door using a thread attached to the end of a
stylus that an assistant moves along the
contours of the object to draw.

* The thread passes through the door's frame
and then through a hook on the wall. The
thread forms a ray and the hook acts as the
center of projection and corresponds to the
camera position in raytracing.

106

Another Definition

* Ray tracing is an image-order algorithm
for making renderings of 3D scenes,
and we’ll consider it first because it’s
possible to get a ray tracer working
without developing any of the
mathematical machinery that’s used for
object-order rendering.

107

2021-03-30

The Basic Ray-Tracing Algorithm

* A basic ray tracer therefore has three
parts:

1. ray generation, which computes the origin
and direction of each pixel’s viewing ray
based on the camera geometry;

2. ray intersection, which finds the closest
object intersecting the viewing ray;

3. shading, which computes the pixel color
based on the results of ray intersection.

108

The Basic Ray-Tracing Algorithm-cont.

* for each pixel do compute viewing ray
* find first object hit by ray and its surface normal n
* set pixel color to value computed from hit point, light, and n

109

2021-03-30

Perspective

* The problem of representing a 3D object or scene
with a 2D drawing or painting was studied by artists
hundreds of years before computers. Photographs
also represent 3D scenes with 2D images.

* While there are many unconventional ways to make
images, from cubist painting to fisheye lenses
(Figure A) to peripheral cameras, the standard
approach for both art and photography, as well as
computer graphics, is linear perspective, in which
3D objects are projected onto an image plane in
such a way that straight lines in the scene become
straight lines in the image.

(Figure A)

110

Perspective-cont.

* The simplest type of projection is parallel projection, in which 3D
points are mapped to 2D by moving them along a projection
direction until they hit the image plane (Figures B)

B

Orthographic

(Figure B)

Axis-aligned
orthographic

111

2021-03-30

Perspective-cont.

* The advantages of parallel projection are also its limitations. In our
everyday experience (and even more so in photographs) objects look
smaller as they get farther away, and as a result parallel lines receding
into the distance do not appear parallel. This is because eyes and
cameras don’t collect light from a single viewing direction; they collect
light that passes through a particular viewpoint.

@ @ (Figure B)

Perspective Oblique

112

Computing Viewing Rays

* In order to generate rays, we first need a mathematical
representation for a ray.

* Aray is really just an origin point and a propagation direction; a 3D
parametric line is ideal for this. the 3D parametric line from the eye e
to a point s on the image plane is given by

p(t)=e+t(s—e)

113

2021-03-30

Computing Viewing Rays-cont.

* The sample points on the screen are mapped to a similar array on the
3D window. A viewing ray is sent to each of these locations.

olo| o w

o|lo| o € 0
0 9

o|lo| e Ray 0

0 9
u
0
Screen \ 0
1

114

Computing Viewing Rays-cont.

* The vectors of the camera frame, together with the view direction
and up direction. The w vector is opposite the view direction, and the
v vector is coplanar with w and the up vector.

Iy
F <8

115

2021-03-30

Parallel vs Perspective

* Ray generation using the camera
frame.

* Left: In an orthographic view, the rays
start at the pixels’ locations on the image
plane, and all share the same direction,
which is equal to the view direction.

* Right: In a perspective view, the rays start
at the viewpoint, and each ray’s direction
is defined by the line through the came eons e i

viewpoint, e, and the pixel’s location on
the image plane.

Perspective projection
same origin, different directions

A

116

Ray - Object Intersection

Ray - Object Intersection
CSCI 4K30/7000 Spring 2011

Ray - Object Intersection. CSCI 4830/7000
Spring 2011

117

2021-03-30

Ray Tracing in Action

* A simple scene rendered with only ray generation and surface
intersection, but no shading; each pixel is just set to a fixed color
depending on which object it hit.

118

Ray Tracing in Action-cont.

* A simple scene rendered with diffuse shading from a single light
source.

119

2021-03-30

Ray Tracing in Action-cont.

* A simple scene rendered with diffuse shading and shadows from
three light sources.

120

Ray Tracing in Action-cont.

* A simple scene rendered with diffuse shading (blue sphere), Blinn-
Phong shading (green sphere), and shadows from three light sources.

121

