Applications of Stack

In this lecture, the following topics are covered:
· Applications of stack
· Reversing a List problem
· Recursion

1. Applications of Stack
In this section we will discuss typical problems where stacks can be easily applied for a simple and efficient solution.
The following are some of the problems where the stack can be applied:
· Reversing a list
· Parentheses checker
· Conversion of an infix expression into a postfix expression
· Evaluation of a postfix expression
· Conversion of an infix expression into a prefix expression
· Evaluation of a prefix expression
· Recursion
However, only reversing a list and recursion are introduced here.
2. Reversing a List
A list of numbers can be reversed by reading each number from an array starting from the first index and pushing it on a stack. Once all the numbers have been read, the numbers can be popped one at a time and then stored in the array starting from the first index. The following program shows how to use the stack data structure to reverse an n integer numbers stored in an array. Notice that pushing first these numbers into the stack and then popping them out can accomplish this task.

[image:]
[bookmark: _GoBack][image:]
[image:]
3. Recursion
· Recursion is an implicit application of the stack.
· A recursive function is defined as a function that calls itself to solve a smaller version of its task until a final call is made which does not require a call to itself.
· Since a recursive function repeatedly calls itself, it makes use of the system stack to temporarily store the return address and local variables of the calling function.
· Every recursive solution has two major cases. They are:
· Base case, in which the problem is simple enough to be solved directly without making any further calls to the same function.
· Recursive case, in which first the problem at hand is divided into simpler sub-parts. Second, the function calls itself but with sub-parts of the problem obtained in the first step. Third, the result is obtained by combining the solutions of simpler sub-parts.
· Therefore, recursion is defining large and complex problems in terms of smaller and more easily solvable problems. In recursive functions, a complex problem is defined in terms of simpler problems and the simplest problem is given explicitly.
· To understand recursive functions, let us take an example of calculating factorial of a number. To calculate n!, we multiply the number with factorial of the number that is 1 less than that number. In other words, n! = n × (n–1)!.
[image:]
[image:]
The series of problems and solutions can be given as shown in Fig. 7.27.
[image:].
Now if you look at the problem carefully, you can see that we can write a recursive function to calculate the factorial of a number.
Every recursive function must have a base case and a recursive case. For the factorial function:
· Base case is when n = 1, because if n = 1, the result will be 1 as 1! = 1.
· Recursive case of the factorial function will call itself but with a smaller value of n. This case can be given as:
[image:]
Look at the following program which calculates the factorial of a number recursively

[image:]
[image:]

الصفحة 3 من 4

image4.png
Let us say we need to find the value of 51
Sl=Sxax3xaxl
=120
‘This can be written as
S1 =5 x 41, where 41= 4 x 31
Therefore,
SL=5xax3l
Similarly, we can also write,

image5.png
51=5x4x3x2l
Expanding further

Sl=sxax3x2x1l
We know, 1! = 1

image6.png
PROBLEM SOLUTION

st 5x4x3x2x1l

x4l =5x4x3x2x1
=5x4x31 =5x4x3x2

x4x3x21 5x4x6
xax3x2x11 | —5x2a
=120

Figure 7.27 Recursive factorial function

image7.png
factorial(n) = n x factorial (n-1)

image8.png
‘Write a program to calculate the factorial of a given number.

#include <stdio.h>
int Fact(int); // FUNCTION DECLARATION
int main()

€

val = Fact(num);
printf("\n Factorial of % = %", num, val);
return 0;

3
int Fact(int n)

1f(nes1)
return 1;
else
return (n * Fact(n-1));

image9.png
Output
Enter the nusber : 5
Factorial of 5 = 120

image1.png
‘Write a program to reverse a list of given numbers.
#include <stdio.h>

image2.png
#include <conio.h>
int stk[10];
int to|
int pop();
void push(int);

int main()
1{
int val, n, i,
arr[10];
clrscr();

printf("\n Enter the number of elements in the array :
scanf("%d", &n);
printf("\n Enter the elements of the array :
for(i=0;i<n;it+)

scanf("%d", &arr[i]);
for(i=0;i<n;it+)

)

push(arr[i]);
for(i=0;i<n;it+)
1{

val = pop();

arr[i] = val;
}
printf("\n The reversed array is : ");
for(i=0;i<n;it+)

printf("\n %d", arr[i]);
getche”();
return 0;

image3.png
void push(int val)
1{

stk[++top] = val;
}
int pop()
1{

return(stk[top--]);
}

