Applications of Stack

In this lecture, the following topics are covered:
· Applications of stack
· Reversing a List problem
· Recursion

1. Applications of Stack
In this section we will discuss typical problems where stacks can be easily applied for a simple and efficient solution.
The following are some of the problems where the stack can be applied:
· Reversing a list
· Parentheses checker
· Conversion of an infix expression into a postfix expression
· Evaluation of a postfix expression
· Conversion of an infix expression into a prefix expression
· Evaluation of a prefix expression
· Recursion
However, only reversing a list and recursion are introduced here.
2. Reversing a List
A list of numbers can be reversed by reading each number from an array starting from the first index and pushing it on a stack. Once all the numbers have been read, the numbers can be popped one at a time and then stored in the array starting from the first index. The following program shows how to use the stack data structure to reverse an n integer numbers stored in an array. Notice that pushing first these numbers into the stack and then popping them out can accomplish this task.

[image:]
[bookmark: _GoBack][image:]
[image:]
3. Recursion
· Recursion is an implicit application of the stack.
· A recursive function is defined as a function that calls itself to solve a smaller version of its task until a final call is made which does not require a call to itself.
· Since a recursive function repeatedly calls itself, it makes use of the system stack to temporarily store the return address and local variables of the calling function.
· Every recursive solution has two major cases. They are:
· Base case, in which the problem is simple enough to be solved directly without making any further calls to the same function.
· Recursive case, in which first the problem at hand is divided into simpler sub-parts. Second, the function calls itself but with sub-parts of the problem obtained in the first step. Third, the result is obtained by combining the solutions of simpler sub-parts.
· Therefore, recursion is defining large and complex problems in terms of smaller and more easily solvable problems. In recursive functions, a complex problem is defined in terms of simpler problems and the simplest problem is given explicitly.
· To understand recursive functions, let us take an example of calculating factorial of a number. To calculate n!, we multiply the number with factorial of the number that is 1 less than that number. In other words, n! = n × (n–1)!.
[image:]
[image:]
The series of problems and solutions can be given as shown in Fig. 7.27.
[image:].
Now if you look at the problem carefully, you can see that we can write a recursive function to calculate the factorial of a number.
Every recursive function must have a base case and a recursive case. For the factorial function:
· Base case is when n = 1, because if n = 1, the result will be 1 as 1! = 1.
· Recursive case of the factorial function will call itself but with a smaller value of n. This case can be given as:
[image:]
Look at the following program which calculates the factorial of a number recursively

[image:]
[image:]

الصفحة 3 من 4

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image1.png

image2.png

image3.png

