
AJAX

1. Introduction

o Asynchronous JavaScript with XML (AJAX) is a term used to describe a

paradigm that allows a web browser to send messages back to the server

without interrupting the flow of what's being shown in the browser.

o AJAX allows web pages to be updated asynchronously by exchanging

data with a web server behind the scenes. This means that it is possible

to update parts of a web page, without reloading the whole page.

o This makes use of a browser's multithreaded design and lets one thread

handle the browser and interactions while other threads wait for

responses to asynchronous requests.

o Responses to asynchronous requests are caught in JavaScript as

events.

o The events can subsequently trigger changes in the user interface or make

additional requests. This differs from the typical synchronous requests

which require the entire web page to refresh in response to a request.

o AJAX just uses a combination of:

 A browser built-in XMLHttpRequest object (to request data from a

web server)

 JavaScript and HTML DOM (to display or use the data)

2. How AJAX Works
The following steps which are shown in Figure 1 describe how AJAX Works:

1. An event occurs in a web page (the page is loaded or a button is clicked).

2. An XMLHttpRequest object is created by JavaScript.

3. The XMLHttpRequest object sends a request to a web server.

4. The server processes the request

5. The server sends a response back to the web page

6. The response is read by JavaScript

7. Proper action (like page update) is performed by JavaScript

Figure 1. How AJAX works.

3. The XMLHttpRequest Object

o All modern browsers support the XMLHttpRequest object.

o The XMLHttpRequest object can be used to exchange data with a web

server behind the scenes. This means that it is possible to update parts of

a web page, without reloading the whole page.

o The following steps are taken sequentially to achieve AJAX using the

XMLHttpRequest object.

1. Create an XMLHttpRequest object

2. Define a callback function

3. Open the XMLHttpRequest object

4. Send a Request to a server

4.1 Create an XMLHttpRequest Object

o All modern browsers (Chrome, Firefox, IE, Edge, Safari, Opera)

have a built-in XMLHttpRequest object.

o Syntax for creating an XMLHttpRequest object:

4.2 Define a Callback Function

o A callback function is a function passed as a parameter to

another function.

o In this case, the callback function should contain the code to

execute when the response is ready.

4.3 Send a Request

o To send a request to a server, you can use the open() and send()

methods of the XMLHttpRequest object:

Example:

Output:

Before clicking "Change Content" button

After clicking "Change Content" button

4. Modern Browsers (Fetch API)
o Modern Browsers can use Fetch API instead of the XMLHttpRequest

Object.
o The Fetch API interface allows web browser to make HTTP requests

to web servers.

o If you use the XMLHttpRequest Object, Fetch can do the same in a
simpler way.

The onload Property

o With the XMLHttpRequest object you can define a callback function
to be executed when the request receives an answer.

o The function is defined in the onload property of
the XMLHttpRequest object:

Example:

