
A comprehensive guide to PHP file operations

• By Adebayo Adams

• on Mar 26, 2024

Everything you do when using computers is related to files and folders. The browser you're
using to view this webpage is a file on your device, and this webpage is a file on this
website's server, which means everything is a file one way or another. In this article, you
will learn everything you need to know to build files and folder-related features in your PHP
applications.

Prerequisites
To follow along with this article, you need to have a solid grasp of the basics of PHP.
Knowledge of variables, functions, conditionals, etc., will come in handy.

However, every concept and code example covered in this article will be adequately
explained to ensure everything is clear.

File operations in PHP
File handling is an essential part of any web application, and all programming languages
provide a way to perform these tasks in your applications. PHP is no exception, so it gives
an extensive list of functions you can use when working with files in your applications.

The following sections will explore these functions and what they allow you to do in your
PHP applications.

Reading files in PHP
Reading files is the most common file-related task in programming. PHP provides different
ways to do this in your applications, and we will be exploring them in the following sections.

Read the file into a string variable

PHP allows you to read files as strings with the file_get_contents function. Here's an
example:

$fileContents = file_get_contents('file.txt');

echo $fileContents;

The code above returns all the content in the file.txt as a string or a warning if the file is
unavailable in the directory.

Read file line by line

You can easily read a file line by line in PHP by using the fopen function with a loop like
this:

if (file_exists('file.txt')) {
 $file = fopen('file.txt', 'r');
 while (($line = fgets($file)) !== false) {
 echo $line . '
';
 }
 fclose($file);
} else {
 echo 'File does not exist';
}

The code above checks if the file exists using the file_exists function and opens
the file.txt file in read mode; it then uses a while loop and the fgets function to read
and print out the file line by line. Finally, after completing the loop, the code uses
the fclose function to close the file.

The code above will return the following based on my file.txt file:

This is a sample text file.
It contains some text for testing purposes.
You can add more text here.
Note: You should always check if a file exists before operating on it and close files after working on
them. Doing these would help minimize the number of bugs you'll have to fix.

Let's explore the different file opening modes in the next section.

Understanding the file opening modes in PHP
The fopen function in PHP is used to open files and returns a file pointer/resource that can
be used for various file operations. The function accepts a filename and an optional mode
string that specifies the intended file operation and other options. The following is a list of
common mode options for fopen.

r (Read)

Open the file for reading. The file pointer is placed at the beginning of the file. If the file
does not exist, it will return false.

r+ (Read/Write)

Open the file for both reading and writing. The file pointer is placed at the beginning of the
file. If the file does not exist, it will return false.

w (Write)

Open the file for writing. If the file does not exist, it will be created. If the file exists, its
contents will be truncated. The file pointer is placed at the beginning of the file.

w+ (Read/Write)

Open the file for both reading and writing. If the file does not exist, it will be created. If the
file exists, its contents will be truncated. The file pointer is placed at the beginning of the
file.

a (Append)

Open the file for writing. If the file does not exist, it will be created. The file pointer is placed
at the end of the file, allowing you to append data without overwriting existing content.

a+ (Append/Read)

Open the file for reading and writing. If the file does not exist, it will be created. The file
pointer is placed at the end of the file.

x (Exclusive Create)

Open the file for writing only if it does not already exist. If the file exists, fopen will
return false.

x+ (Exclusive Create/Read)

Open the file for reading and writing only if it does not already exist. If the file
exists, fopen will return false.

c (Open for Writing)

Open the file for writing. If the file does not exist, it will be created. Unlike w, it does not
truncate the file. The file pointer is placed at the beginning of the file.

c+ (Open for Reading/Writing)

Open the file for reading and writing. If the file does not exist, it will be created. Unlike w+, it
does not truncate the file. The file pointer is placed at the beginning of the file.

e (Ephemeral)

Open the file in "ephemeral" mode. It behaves like w but does not affect the file modification
time. It was introduced in PHP 7.4.

b (Binary mode)

Append b to any of the above modes (e.g., rb, wb+) to indicate binary mode, which is used
when working with binary files.

t (Text mode)

Append t to any of the above modes (e.g., rt, w+t) to indicate text mode, which is the
default mode used for text files on most platforms.

Note: The behavior of fopen may vary slightly between different operating systems. Also, some
modes may have platform-specific nuances or restrictions. Always check the PHP documentation
and consider error handling when using fopen to ensure your code behaves as expected.

Reading .csv files in PHP

PHP provides a fgetcsv function for handling .csv files in your PHP applications. You can
read and parse .csv files like this:

if (file_exists('file.csv')) {
 $csvFile = fopen('file.csv', 'r');
 while (($data = fgetcsv($csvFile)) !== false) {
 echo '<pre>';
 print_r($data);
 echo '</pre>';
 }
 fclose($csvFile);
} else {
 echo 'File does not exist';
}

The code above does the same thing as the previous one but prints the CSV data as an
associative array. The code will return the following based on my file.csv file:

Array
(
 [0] => Name
 [1] => Age
 [2] => Email
)
Array
(
 [0] => John Doe
 [1] => 30
 [2] => john@example.com
)
Array
(
 [0] => Jane Smith
 [1] => 25
 [2] => jane@example.com
)
Array
(
 [0] => Bob Johnson
 [1] => 35
 [2] => bob@example.com
)

Reading .json files in PHP

PHP enables you to read and decode .json files using
the file_get_contents and json_decode functions like this:

if (file_exists('file.json')) {
 $jsonString = file_get_contents('file.json');
 $jsonData = json_decode($jsonString, true);
 echo '<pre>';
 print_r($jsonData);
 echo '</pre>';
} else {
 echo 'File does not exist';
}

The code above will print out the content of the file.json file as an associative array:

Array
(
 [0] => Array
 (
 [name] => John Doe
 [age] => 30
 [email] => john@example.com
 [address] => Array
 (
 [street] => 123 Main St
 [city] => Anytown
 [state] => CA
)
 [hobbies] => Array
 (
 [0] => Reading
 [1] => Gardening
 [2] => Cooking
)
)
 [1] => Array
 (
 [name] => Jane Doe
 [age] => 25
 [email] => jane@example.com
 [address] => Array
 (
 [street] => 123 Alao St
 [city] => Surulere
 [state] => LA
)
 [hobbies] => Array
 (
 [0] => Crocheting
 [1] => Hunting
 [2] => Swimming
)
)
)

Reading .xml files in PHP

PHP provides a simplexml_load_string function that you can combine with
the file_get_contents to read .xml files in your applications. For example, you can
parse and use the content of a .xml file as an array in your code like this:

if (file_exists('data.xml')) {
 $xmlString = file_get_contents('data.xml');
 $xml = simplexml_load_string($xmlString);
 $json = json_encode($xml);
 $array = json_decode($json, true);
 echo '<pre>';
 print_r($array);
 echo '</pre>';
} else {
 echo 'File does not exist';
}

The code above prints out the content of the data.xml file as an associative array like this:

Array
(
 [person] => Array
 (
 [0] => Array
 (
 [name] => John Doe
 [age] => 30
 [email] => john@example.com
)

 [1] => Array
 (
 [name] => Jane Smith
 [age] => 25
 [email] => jane@example.com
)

 [2] => Array
 (
 [name] => Bob Johnson
 [age] => 35
 [email] => bob@example.com
)

)

)

Now that you understand how to read different types of files in PHP, let's explore how to
write to files in the next section.

Writing and manipulating files in PHP
Many use cases require you to create and write files in your applications. The following
sections will explore how to create, write, and manipulate files in PHP.

Creating a new file in PHP

Creating new files in PHP is relatively easy using the fopen function. For example, you can
create a new log.txt file like this:

if (!file_exists('log.txt')) {
 $file = fopen("log.txt", "w");
 fclose($file);
} else {
 echo 'File exists already';
}

The code above checks whether the log file already exists before using the fopen function
to create a new log.txt file.

Note: You can create any file using the above method; you only need to change the extension. For
example, to make a .json file, you only need to add .json to the end of the file name.

Writing to an existing file in PHP

PHP allows you to write to files easily by opening a file in w mode. For example, you can
write to the log.txt file you created in the previous section like this:

if (file_exists('log.txt')) {
 $file = fopen("log.txt", "w");
 fwrite(
 $file,
 "----- Log File -----

[2023-10-10 13:45:00] - Application started.
[2023-10-10 14:15:25] - User 'john_doe' logged in.
[2023-10-10 15:30:12] - Error: Unable to connect to the database.
"
);
 fclose($file);
} else {
 echo 'File does not exist.';
}

The code above checks if the log file exists before using the fopen function with
the w mode to write to the log.txt file. The log.txt file should now contain the following:

----- Log File -----

[2023-10-10 13:45:00] - Application started.
[2023-10-10 14:15:25] - User 'john_doe' logged in.
[2023-10-10 15:30:12] - Error: Unable to connect to the database.
Note: The code above would replace any content the file has in it with the given text in the code.

Appending to files in PHP

Appending to files in PHP means adding to the content in a file instead of overriding it. For
example, to add to the log file, you can do the following:

<?php

if (file_exists('log.txt')) {
 $file = fopen("log.txt", "a");
 fwrite(
 $file,
 "[2023-10-10 16:00:45] - File 'document.txt' successfully uploaded.
[2023-10-10 18:20:03] - User 'jane_smith' logged out.

----- End of Log -----"
);
 fclose($file);
} else {
 echo 'File does not exist.';
}

The code above does the same thing as the previous one but with the a mode to add the
content instead of overriding the existing content.

Writing to .csv files
PHP makes writing to a .csv file easy by providing you with the fputcsv function. For
example, you can create and write to a data.csv file like so:

$data = [['name', 'age', 'email'], ['Adams Adebayo', 22, 'adams@example.com'],
['Isreal Adesanya', 33, 'isreal@stylebender.com']];
$file = fopen("data.csv", "a");
foreach ($data as $row) {
 fputcsv($file, $row);
}
fclose($file);

The code above defines a data variable containing the data that should be written into
the data.csv file, creates the file using the fopen function with the a mode, and uses
a foreach loop and the fputcsv function to write the data variable to the created file.

Once the code is run, the data.csv file should now be in the folder with the following
content:

name,age,email
"Adams Adebayo",22,adams@example.com
"Isreal Adesanya",33,isreal@stylebender.com

Writing to .xml files
PHP makes writing to a .xml file easy by providing the file_put_contents function. For
example, you can create and write to a data.xml file like so:

$file = fopen("data.xml", "a");
$xml = '<?xml version="1.0" encoding="UTF-8"?>
 <data>
 <name>John</name>
 <age>30</age>
 </data>';
fwrite($file, $xml);
fclose($file);

The code above defines an xml variable containing the data that should be written into
the data.xml file, creates the file using the fopen function with the a mode, and uses
the fwrite function to write the xml variable into the created file.

Once the code is run, the data.xml file should now be in the folder with the following
content:

<?xml version="1.0" encoding="UTF-8"?>
 <data>
 <name>John</name>
 <age>30</age>
 </data>

Deleting files in PHP
PHP provides an unlink function that you can use to delete files in your application. For
example, you can delete the data.xml file you created in the previous section like this:

if (file_exists('data.xml'))
 $del = unlink('data.xml');

Once the code is run, the specified file will be deleted from the directory.

Note: Always check for the file's existence before deleting because the code above will return a
warning if the specified file does not exist.

Let's explore how to work with directories in the next section.

Working with directories in PHP
PHP provides various functions that enable you to work with folders, commonly known as
directories, in your applications. We will explore some of those in the following sections.

Creating a directory in PHP

Creating directories in PHP is quite straightforward using the mkdir function. For example,
you can create a sample folder with three files inside it like this:

$dirPath = 'sample';
if (!file_exists($dirPath)) {
 mkdir($dirPath);
 fopen($dirPath . '/index.txt', 'w');
 fopen($dirPath . '/index.csv', 'w');
 fopen($dirPath . '/index.json', 'w');
}

The code above checks if the sample directory exists and creates it alongside three other
files if it doesn’t. Once the code is run, there should be a sample folder and
three index files with different extensions inside it in your project directory.

List contents of a directory in PHP

Listing the contents of a given directory is a prevalent task in PHP. You can list the contents
of the sample directory like this:

$dirPath = 'sample';
$contents = scandir($dirPath);
foreach ($contents as $item) {
 echo $item . '
';
}

The code above uses the scandir function with the foreach loop to list its content like
so:

.

..
index.csv
index.json
index.txt
Note: The single dot represents the root folder, and the double dots represent the sample folder. Also,
if subdirectories are in the given folder, they will also be listed.

You can filter to list only files like this:

$dirPath = 'sample';
$contents = scandir($dirPath);
foreach ($contents as $item) {
 if (is_file($dirPath . '/' . $item)) {
 echo $item . '
';
 }
}

The code above adds another check to the previous one to check if the item is a file using
the is_file function before listing them.

You can also list only subfolders in the given directory by using the is_dir like this:

$dirPath = 'sample';
$contents = scandir($dirPath);
foreach ($contents as $item) {
 if (is_dir($dirPath . '/' . $item)) {
 echo $item . '
';
 }
}

Renaming directories in PHP

PHP allows you to rename directories in your applications with the rename function. For
example, you can rename the sample directory like this:

$oldDirName = 'sample';
$newDirName = 'dataSamples';
if (is_dir($oldDirName)) {
 rename($oldDirName, $newDirName);
}

The code above checks if the oldDirName is a directory and renames it as newDirName.

Deleting directories in PHP

PHP provides a rmdir function that can be used to delete directories in your application.
For example, you can delete a directory in your application like this:

if (is_dir("dataSamples")) {
 rmdir($dirPath);
}

The code above checks if the given string is a directory name and deletes it from the folder.
However, the code above will return a warning telling you that the directory is not empty like
so:

Warning: rmdir(dataSamples): Directory not empty in
/Users/Adams/Documents/phps/phpfileops/index.php on line 50

In the next section, let's explore how to delete a directory with all its content.

Deleting a directory with all its content in PHP

You can delete the dataSamples directory with all its content by creating a function like
so:

function deleteFolder($dirPath)
{
 if (!is_dir($dirPath)) {
 return false;
 }

 // Open the directory for reading
 $dirHandle = opendir($dirPath);

 // Loop through the directory and delete its contents
 while (($file = readdir($dirHandle)) !== false) {
 if ($file !== '.' && $file !== '..') {
 $filePath = $dirPath . '/' . $file;

 // If it's a directory, recursively delete it
 if (is_dir($filePath)) {
 deleteFolder($filePath);
 } else {
 // If it's a file, delete it
 unlink($filePath);
 }
 }
 }

 // Close the directory handle
 closedir($dirHandle);

 // Delete the empty directory
 rmdir($dirPath);

 return true;
}

The code above creates a function that combines the functions we explored in the previous
section and a while loop to open, read, and delete subdirectories and files inside the
directory before deleting it. You can use the function above to delete
the dataSamples folder and its content like so:

$folderToDelete = 'dataSamples';
if (deleteFolder($folderToDelete)) {
 echo 'Folder and its contents deleted successfully.';
} else {
 echo 'Failed to delete folder.';
}

The code above deletes the dataSamples directory and returns the following:

Folder and its contents deleted successfully.

Now that you understand how to read, write, and manipulate files and directories in PHP,
let's explore the advanced file-handling tasks you would encounter when building PHP
applications.

Advanced file operations in PHP
In this section, we will explore some of the different advanced file operations you might
encounter when building PHP applications.

Create a ZIP archive of a directory

Creating a ZIP archive of folders is a common task you will come across when building
PHP applications. You can create a ZIP archive of a folder like this:

$sourceDir = 'sample';
$zipFileName = 'sample.zip';
$zip = new ZipArchive();
if ($zip->open($zipFileName, ZipArchive::CREATE) === true) {
 $files = new RecursiveIteratorIterator(new
RecursiveDirectoryIterator($sourceDir));
 foreach ($files as $file) {
 if (!$file->isDir()) {
 $filePath = $file->getRealPath();
 $relativePath = substr($filePath, strlen($sourceDir) + 1);
 $zip->addFile($filePath, $relativePath);
 }
 }
 $zip->close();
 echo 'Directory zipped successfully.';
} else {
 echo 'Failed to create ZIP archive.';
}

The code above uses the ZipArchive, RecursiveIteratorIterator,
and RecursiveDirectoryIterator classes to create a ZIP archive of the given folder.
Once the code is run, it will create a sample.zip file in the root folder and print out the
following message:

Directory zipped successfully.

Here's a log.txt that I'll be using to demonstrate the following sections:

[2023-10-10 13:45:00] - Application started.
[2023-10-10 14:15:25] - User 'john_doe' logged in.
[2023-10-10 15:30:12] - Error: Unable to connect to the database.
[2023-10-10 16:00:45] - File 'document.txt' successfully uploaded.
[2023-10-10 18:20:03] - User 'jane_smith' logged out.
[2023-10-10 08:00:00] - Application started.
[2023-10-10 08:15:25] - User 'john_doe' logged in.
[2023-10-10 08:30:12] - Error: Unable to connect to the database.
[2023-10-10 09:00:45] - File 'document.txt' successfully uploaded.
[2023-10-10 09:30:03] - User 'jane_smith' logged out.
[2023-10-10 10:05:15] - Information: 5 new emails received.
[2023-10-10 11:20:45] - Warning: High CPU usage detected.
[2023-10-10 11:45:10] - User 'admin' made changes to the system settings.
[2023-10-10 12:10:33] - Database backup completed successfully.
[2023-10-10 13:25:50] - User 'alice' updated her profile.
[2023-10-10 14:00:02] - Information: 10 new user registrations.
[2023-10-10 14:30:19] - File 'report.pdf' downloaded by user 'bob'.

[2023-10-10 15:15:37] - Warning: Low disk space on server.
[2023-10-10 16:05:55] - User 'charlie' changed their password.
[2023-10-10 16:35:11] - Error: Server crashed, restart required.
[2023-10-10 17:10:28] - Information: Daily backup completed.
[2023-10-10 17:45:46] - User 'david' created a new project.
[2023-10-10 18:20:00] - File 'presentation.ppt' uploaded by user 'emily'.
[2023-10-10 18:45:21] - User 'frank' logged in.
[2023-10-10 19:15:40] - Warning: Network connection lost.
[2023-10-10 19:45:59] - User 'grace' sent a message to 'harry'.
[2023-10-10 20:10:18] - Information: Server maintenance in progress.
[2023-10-10 20:30:32] - User 'ian' logged out.
[2023-10-10 21:05:47] - Error: Unable to load web page.
[2023-10-10 21:25:59] - File 'data.csv' exported by user 'jack'.
[2023-10-10 22:00:10] - Information: 3 new comments on the blog.
[2023-10-10 22:30:22] - User 'kate' updated their profile picture.
[2023-10-10 23:00:34] - Warning: Unusual login activity detected.
[2023-10-10 23:20:45] - User 'lucy' logged in from a new device.
[2023-10-10 23:45:57] - Information: Scheduled tasks completed.

Read and display the first N lines of a file
You can easily get the first N lines of a file in PHP using the following code:

$file = fopen('log.txt', 'r');
$linesToRead = 10;
$lineCount = 0;
while (($line = fgets($file)) !== false && $lineCount < $linesToRead) {
 echo $line . '
';
 $lineCount++;
}
fclose($file);

The code above returns the first ten lines of the log.txt file.

Read and display the last N lines of a file

You can easily get the last N lines of a file in PHP using the following code:

function displayLastNLines($filename, $n)
{
 $lines = [];
 $file = new SplFileObject($filename, 'r');

 $file->seek(PHP_INT_MAX);
 $totalLines = $file->key() + 1;

 if ($totalLines < $n) {
 $file->seek(0);
 } else {
 $file->seek($totalLines - $n);
 }

 while (!$file->eof()) {
 $lines[] = $file->current();
 $file->next();
 }

 foreach (array_slice($lines, -$n) as $line) {
 echo $line;
 echo '
';
 }
}

$filename = 'log.txt';
$numberOfLines = 10;
displayLastNLines($filename, $numberOfLines);

The code above creates a function that takes in a file name and a number of lines and
returns data based on the given number from the file.

Read and search for a specific string in a file
You can search for words in a given file in PHP like this:

function findAllInstancesInFile($filename, $searchString)
{
 $fileContents = file_get_contents($filename);
 $lines = explode(PHP_EOL, $fileContents);
 $foundInstances = [];

 foreach ($lines as $line) {
 if (strpos($line, $searchString) !== false) {
 $foundInstances[] = $line;
 }
 }

 return $foundInstances;
}

$filename = 'log.txt';
$searchString = 'database';
$foundInstances = findAllInstancesInFile($filename, $searchString);

if (!empty($foundInstances)) {
 echo "Found instances of '$searchString' in the file:
";
 foreach ($foundInstances as $instance) {
 echo $instance;
 echo '
';
 }
} else {
 echo "No instances of '$searchString' found in the file.";
}

The code above creates a function that searches for a given string in the given file and
returns an array of the found instances.

Read and display the file size

You can retrieve the size of a file in PHP using the filesize function like this:

$fileSize = filesize('log.txt');
echo "File size: $fileSize bytes";

The code above returns the size of the log.txt file like so:

File size: 2127 bytes

Read and display file metadata
Retrieving metadata of files is also straightforward in PHP with the stat function:

$filePath = 'log.txt';
$fileInfo = stat($filePath);
echo "File Size: {$fileInfo['size']} bytes" . '
';
echo "Last Modified: " . date('Y-m-d H:i:s', $fileInfo['mtime']) . '
';
echo "Last Accessed: " . date('Y-m-d H:i:s', $fileInfo['atime']) . '
';
echo "Owner: {$fileInfo['uid']}" . '
';
echo "Group: {$fileInfo['gid']}" . '
';
echo "File Permissions: {$fileInfo['mode']}" . '
';
echo "Inode Number: {$fileInfo['ino']}" . '
';
echo "Number of Links: {$fileInfo['nlink']}" . '
';

The code above returns the following information about the file:

File Size: 2128 bytes
Last Modified: 2023-10-10 21:22:47
Last Accessed: 2023-10-10 21:22:48
Owner: 501
Group: 20
File Permissions: 33188
Inode Number: 15392607
Number of Links: 1
Note: The result will be different depending on the given file.

