Process

Distributed Systems

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Processes: Threads Introduction to threads

Introduction to threads

Basic idea
We build virtual processors in software, on top of physical processors:

Processor: Provides a set of instructions along with the capability of
automatically executing a series of those instructions.

Thread: A minimal software processor in whose context a series of
instructions can be executed. Saving a thread context implies
stopping the current execution and saving all the data needed to
continue the execution at a later stage.

Process: A software processor in whose context one or more threads may
be executed. Executing a thread, means executing a series of
instructions in the context of that thread.

Processes: Threads Introduction to threads

Context switching

Contexts

@ Processor context: The minimal collection of values stored in the registers
of a processor used for the execution of a series of instructions (e.g.,
stack pointer, addressing registers, program counter).

@ Thread context: The minimal collection of values stored in registers and
memory, used for the execution of a series of instructions (i.e., processor
context, state).

@ Process context: The minimal collection of values stored in registers and
memory, used for the execution of a thread (i.e., thread context, but now
also at least MMU register values).

Processes: Threads Introduction to threads

Context switching

Observations

@ Threads share the same address space. Thread context switching can be
done entirely independent of the operating system.

@ Process switching is generally (somewhat) more expensive as it involves
getting the OS in the loop, i.e., trapping to the kernel.

© Creating and destroying threads is much cheaper than doing so for
Processes.

Processes: Threads Introduction to threads

Why use threads

Some simple reasons

@ Avoid needless blocking: a single-threaded process will block when doing
I/O; in a multi-threaded process, the operating system can switch the CPU
to another thread in that process.

@ Exploit parallelism: the threads in a multi-threaded process can be
scheduled to run in parallel on a multiprocessor or multicore processor.

@ Avoid process switching: structure large applications not as a collection of
processes, but through multiple threads.

Processes: Threads Introduction to threads

Avoid process switching

Avoid expensive context switching

Process A Process B

S1: Switch from user space

to kernel space — | S3: Switch from kernel
~ }// space to user space
Operating systerr?\

S2: Switch context from
process A to process B

Trade-offs
@ Threads use the same address space: more prone to errors

@ No support from OS/HW to protect threads using each other’'s memory

@ Thread context switching may be faster than process context switching

y

Processes: Threads

Using threads at the client side

Threads in distributed systems

Multithreaded web client
Hiding network latencies:

@ Web browser scans an incoming HTML page, and finds that more files
need to be fetched.

@ Each file is fetched by a separate thread, each doing a (blocking) HTTP
request.

@ As files come in, the browser displays them.

Multiple request-response calls to other machines (RPC)
@ A client does several calls at the same time, each one by a different
thread.

@ It then waits until all results have been returned.
@ Note: if calls are to different servers, we may have a linear speed-up.

Processes: Threads Threads in distributed systems

Using threads at the server side

Improve performance

@ Starting a thread is cheaper than starting a new process.

@ Having a single-threaded server prohibits simple scale-up to a
multiprocessor system.

@ As with clients: hide network latency by reacting to next request while
previous one is being replied.

Better structure

@ Most servers have high I/O demands. Using simple, well-understood
blocking calls simplifies the overall structure.

@ Multithreaded programs tend to be smaller and easier to understand due
to simplified flow of control.

Processes: Threads Threads in distributed systems

Why multithreading is popular: organization

Dispatcher/worker model

_ Request dispatched
Dispatcher thread to a worker thread Server
\ // /
7 d
m L
P Worker thread

Request coming in A
from the network

Operating system

Overview

Model Characteristics
Multithreading Parallelism, blocking system calls
Single-threaded process | No parallelism, blocking system calls
Finite-state machine Parallelism, nonblocking system calls

Processes: Virtualization Principle of virtualization

Virtualization

Observation
Virtualization is important:
@ Hardware changes faster than software

@ Ease of portability and code migration
@ Isolation of failing or attacked components

Principle: mimicking interfaces

Program
| Interface A |
Program Implementation of
mimicking A on B
| Interface A | | Interface B |
Hardware/software system A Hardware/software system B

Processes: Virtualization Principle of virtualization

Mimicking interfaces

Four types of interfaces at three different levels

@ |Instruction set architecture: the set of machine instructions, with two
subsets:

e Privileged instructions: allowed to be executed only by the operating
system.
@ General instructions: can be executed by any program.

@ System calls as offered by an operating system.
© Library calls, known as an application programming interface (API)

1

Processes: Virtualization Principle of virtualization

Ways of virtualization

(a) Process VM, (b) Native VMM, (c) Hosted VMM

Application/Libraries

[[
Application/Libraries Application/Libraries Operating system
[[[[] [
Runtime system Operating system Virtual machine monitor
[[[] [[[
Operating system Virtual machine monitor Operating system
[] [] [[]
Hardware Hardware Hardware

(@) (b) (c)

Differences

(a) Separate set of instructions, an interpreter/emulator, running atop an OS.
(b) Low-level instructions, along with bare-bones minimal operating system
(c) Low-level instructions, but delegating most work to a full-fledged OS.

12

Processes: Virtualization Application of virtual machines to distributed systems

VMs and cloud computing

Three types of cloud services

@ Infrastructure-as-a-Service covering the basic infrastructure
@ Platform-as-a-Service covering system-level services
@ Software-as-a-Service containing actual applications

4

Instead of renting out a physical machine, a cloud provider will rent out a VM

(or VMM) that may possibly be sharing a physical machine with other
customers = almost complete isolation between customers (although

performance isolation may not be reached).

13

Processes: Clients

Client-server interaction

Distinguish application-level and middleware-level solutions

Client machine Server machine Client machine

Networked user interfaces

Server machine

Application |4 »| Application Application—‘ Application—‘
Application- [Application- [
A specific A A independent A
Middleware protocol Middleware Middleware protocol Middleware
Local OS Local OS Local OS Local OS

\ 1
N . ,/
H H B B B 5 NS EESESNESESNE®R

Network

L /ll
N . -
H HE H B B EEEEEEEEEN

Network

14

Processes: Clients Networked user interfaces

Example: The X Window system

Basic organization

Application server Application server User's terminal
e)
Window Application Xlib interface
manager L

I I I |

Xlib Xlib
Local OS Local OS X protocol \ J

X kernel

YV

Device drivers

Terminal (includes display
keyboard, mouse, etc.)

The application acts as a client to the X-kernel, the latter running as a server
on the client’s machine. 15

Processes: Clients

Client-side software

Client-side software for distribution transparency

Generally tailored for distribution transparency

@ Access transparency: client-side stubs for RPCs

@ Location/migration transparency: let client-side software keep track of
actual location

@ Replication transparency: multiple invocations handled by client stub:

Client machine Server 1 Server 2

Server 3
Client Server Server Server
appl appl appl appl

X Pl Pak

Client side handles

icati .
request replication Replicated request

@ Failure transparency: can often be placed only at client (we're trying to
mask server and communication failures).

16

Processes: Servers General design issues

Servers: General organization

Basic model

A process implementing a specific service on behalf of a collection of clients. It
waits for an incoming request from a client and subsequently ensures that the
request is taken care of, after which it waits for the next incoming request.

17

Processes: Servers General design issues

Concurrent servers

Two basic types

@ lterative server: Server handles the request before attending a next
request.

@ Concurrent server: Uses a dispatcher, which picks up an incoming
request that is then passed on to a separate thread/process.

Concurrent servers are the norm: they can easily handle multiple requests,
notably in the presence of blocking operations (to disks or other servers).

18

Processes: Servers General design issues

Contacting a server

Observation: most services are tied to a specific port

ftp-data 20 File Transfer [Default Data]
ftp 21 File Transfer [Control]
telnet 23 Telnet

smitp 25 Simple Mail Transfer

WwWw 80 Web (HTTP)

Dynamically assigning an end point

Server machine Server machine

2. Request g 2. Continue
Client machine service rzglsier Client machine service [Specific

»| Server [~ end point server
8 Super- Create server

1

1. Ask for Daemon 1. Request server and hand off
end point End-point service request

(A) table (B)

Processes: Servers Server clusters

Three different tiers

Common organization
|
Logical switch I Application/compute servers : Distributed
(possibly multiple) : : file/database
: | system
I : —
: | —
Dispatched | :
| N~
Client requests reW | P
' [
| | N~
| : —
| S —
| <«—L—>>
|
i : -
First tier Second tier ! Third tier)

The first tier is generally responsible for passing requests to an appropriate
server: request dispatching

Processes: Servers Server clusters

Request Handling

Observation

Having the first tier handle all communication from/to the cluster may lead to a
bottleneck.

Logically a
single TCP ~rrrrrrrr—mmesgssasee e Server
connection T

Request
L 3! gSwitch | (handed off)

Request

Client

Server

Processes: Servers Server clusters

Server clusters

The front end may easily get overloaded: special measures may be needed

@ Transport-layer switching: Front end simply passes the TCP request to
one of the servers, taking some performance metric into account.

@ Content-aware distribution: Front end reads the content of the request
and then selects the best server.

6. Server responses
Application
5. Forward server 3. Hand off
other TCP connection
message/' Distributor
Other messages Dis-
Client : Switch 4. Inform patcher
Setup request \i’VitCh
1. Pass setup request A Distributor | 5 1o atcher selects
to a distributor server
Application
server

Processes: Servers Server clusters

When servers are spread across the Internet

Observation

Spreading servers across the Internet may introduce administrative problems.
These can be largely circumvented by using data centers from a single cloud
provider.

Request dispatching: if locality is important
Common approach: use DNS:

@ Client looks up specific service through DNS - client’s IP address is part
of request

@ DNS server keeps track of replica servers for the requested service, and
returns address of most local server.

v

To keep client unaware of distribution, let DNS resolver act on behalf of client.
Problem is that the resolver may actually be far from local to the actual client.

23

Processes: Servers

Server clusters

Distributed servers with stable IPv6 address(es)

Transparency through Mobile IP

Believes server

Client 1

has address HA
~

Believes it is
connected to X

Believes location
of X is CA1 |

Believes server Client 2

has address HA
~

Believes it is
connected to X

Believes location _—
of X'is CA2

Knows that Client 1
believes it is X

Access point
with address CA1

Access point

with address CA2

Knows that Client 2
believes it is X

\:"\ Server 1
1

hr

Distributed server X

—— e = e = e ey

Server 2

L T

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

2%

Processes: Servers Server clusters

Distributed servers: addressing details

Essence: Clients having MobilelPv6 can transparently set up a connection to
any peer

@ Client C sets up connection to IPv6 home address HA

@ HA is maintained by a (network-level) home agent, which hands off the
connection to a registered care-of address CA.

@ C can then apply route optimization by directly forwarding packets to
address CA (i.e., without the handoff through the home agent).

Origin server maintains a home address, but hands off connections to address
of collaborating peer = origin server and peer appear as one server. 26

