
FACULTY OF INFORMATION TECHNOLOGY

Distributed Systems

Process 

1



Processes: Threads Introduction to threads

Introduction to threads

Basic idea
We build virtual processors in software, on top of physical processors:

Processor: Provides a set of instructions along with the capability of
automatically executing a series of those instructions.

Thread: A minimal software processor in whose context a series of
instructions can be executed. Saving a thread context implies
stopping the current execution and saving all the data needed to
continue the execution at a later stage.

Process: A software processor in whose context one or more threads may
be executed. Executing a thread, means executing a series of
instructions in the context of that thread.

2 / 47

2



Processes: Threads Introduction to threads

Context switching

Contexts

Processor context: The minimal collection of values stored in the registers
of a processor used for the execution of a series of instructions (e.g.,
stack pointer, addressing registers, program counter).

Thread context: The minimal collection of values stored in registers and
memory, used for the execution of a series of instructions (i.e., processor
context, state).

Process context: The minimal collection of values stored in registers and
memory, used for the execution of a thread (i.e., thread context, but now
also at least MMU register values).

3 / 47

3



Processes: Threads Introduction to threads

Context switching

Observations

1 Threads share the same address space. Thread context switching can be
done entirely independent of the operating system.

2 Process switching is generally (somewhat) more expensive as it involves
getting the OS in the loop, i.e., trapping to the kernel.

3 Creating and destroying threads is much cheaper than doing so for
processes.

4 / 47

4



Processes: Threads Introduction to threads

Why use threads

Some simple reasons

Avoid needless blocking: a single-threaded process will block when doing
I/O; in a multi-threaded process, the operating system can switch the CPU
to another thread in that process.

Exploit parallelism: the threads in a multi-threaded process can be
scheduled to run in parallel on a multiprocessor or multicore processor.

Avoid process switching: structure large applications not as a collection of
processes, but through multiple threads.

Thread usage in nondistributed systems 5 / 47

5



Processes: Threads Introduction to threads

Avoid process switching

Avoid expensive context switching

Process A Process B

Operating system

S1: Switch from user space
to kernel space

S3: Switch from kernel
space to user space

S2: Switch context from
process A to process B

Trade-offs

Threads use the same address space: more prone to errors

No support from OS/HW to protect threads using each other’s memory

Thread context switching may be faster than process context switching

Thread usage in nondistributed systems 6 / 47

6



Processes: Threads Threads in distributed systems

Using threads at the client side

Multithreaded web client
Hiding network latencies:

Web browser scans an incoming HTML page, and finds that more files
need to be fetched.
Each file is fetched by a separate thread, each doing a (blocking) HTTP
request.
As files come in, the browser displays them.

Multiple request-response calls to other machines (RPC)
A client does several calls at the same time, each one by a different
thread.
It then waits until all results have been returned.
Note: if calls are to different servers, we may have a linear speed-up.

Multithreaded clients 12 / 47

7



Processes: Threads Threads in distributed systems

Using threads at the server side

Improve performance
Starting a thread is cheaper than starting a new process.
Having a single-threaded server prohibits simple scale-up to a
multiprocessor system.
As with clients: hide network latency by reacting to next request while
previous one is being replied.

Better structure
Most servers have high I/O demands. Using simple, well-understood
blocking calls simplifies the overall structure.
Multithreaded programs tend to be smaller and easier to understand due
to simplified flow of control.

Multithreaded servers 14 / 47

8



Processes: Threads Threads in distributed systems

Why multithreading is popular: organization

Dispatcher/worker model

Dispatcher thread

Worker thread

Server

Operating system

Request coming in
from the network

Request dispatched
to a worker thread

Overview

Model Characteristics
Multithreading Parallelism, blocking system calls
Single-threaded process No parallelism, blocking system calls
Finite-state machine Parallelism, nonblocking system calls

Multithreaded servers 15 / 47

9



Processes: Virtualization Principle of virtualization

Virtualization

Observation
Virtualization is important:

Hardware changes faster than software
Ease of portability and code migration
Isolation of failing or attacked components

Principle: mimicking interfaces

Hardware/software system A

Interface A

Program

Hardware/software system B

Interface B

Interface A

Implementation of
mimicking A on B

Program

16 / 47
10

BA



Processes: Virtualization Principle of virtualization

Mimicking interfaces

Four types of interfaces at three different levels
1 Instruction set architecture: the set of machine instructions, with two

subsets:
Privileged instructions: allowed to be executed only by the operating
system.
General instructions: can be executed by any program.

2 System calls as offered by an operating system.
3 Library calls, known as an application programming interface (API)

Types of virtualization 17 / 47

11



Processes: Virtualization Principle of virtualization

Ways of virtualization

(a) Process VM, (b) Native VMM, (c) Hosted VMM

Runtime system

Application/Libraries

Hardware

Operating system

Application/Libraries

Virtual machine monitor

Hardware

Operating system Virtual machine monitor

Application/Libraries

Hardware

Operating system

Operating system

(a) (b) (c)

Differences
(a) Separate set of instructions, an interpreter/emulator, running atop an OS.
(b) Low-level instructions, along with bare-bones minimal operating system
(c) Low-level instructions, but delegating most work to a full-fledged OS.

Types of virtualization 18 / 47

12



Processes: Virtualization Application of virtual machines to distributed systems

VMs and cloud computing

Three types of cloud services
Infrastructure-as-a-Service covering the basic infrastructure
Platform-as-a-Service covering system-level services
Software-as-a-Service containing actual applications

IaaS
Instead of renting out a physical machine, a cloud provider will rent out a VM
(or VMM) that may possibly be sharing a physical machine with other
customers ) almost complete isolation between customers (although
performance isolation may not be reached).

21 / 47

13



Processes: Clients Networked user interfaces

Client-server interaction

Distinguish application-level and middleware-level solutions
Server machine

Application Application

Client machine

Application-
specific
protocol

Network

Middleware Middleware

Local OSLocal OS

Server machineClient machine

Application-
independent

protocol

Network

Middleware Middleware

Local OSLocal OS

Application Application

22 / 47

14



Processes: Clients Networked user interfaces

Example: The X Window system

Basic organization

Window
manager

Application

X kernel

Device drivers

Xlib interface

X protocol

Terminal (includes display
keyboard, mouse, etc.)

Application serverApplication server User's terminal

Xlib Xlib

Local OS Local OS

X client and server
The application acts as a client to the X-kernel, the latter running as a server
on the client’s machine.

Example: The X window system 23 / 47

15



Processes: Clients Client-side software for distribution transparency

Client-side software

Generally tailored for distribution transparency
Access transparency: client-side stubs for RPCs
Location/migration transparency: let client-side software keep track of
actual location
Replication transparency: multiple invocations handled by client stub:

Client
appl

Server
appl

Server
appl

Server
appl

Client machine

Replicated request

Server 1 Server 2 Server 3

Client side handles
request replication

Failure transparency: can often be placed only at client (we’re trying to
mask server and communication failures).

25 / 47

16



Processes: Servers General design issues

Servers: General organization

Basic model
A process implementing a specific service on behalf of a collection of clients. It
waits for an incoming request from a client and subsequently ensures that the
request is taken care of, after which it waits for the next incoming request.

26 / 47

17



Processes: Servers General design issues

Concurrent servers

Two basic types

Iterative server: Server handles the request before attending a next
request.

Concurrent server: Uses a dispatcher, which picks up an incoming
request that is then passed on to a separate thread/process.

Observation
Concurrent servers are the norm: they can easily handle multiple requests,
notably in the presence of blocking operations (to disks or other servers).

Concurrent versus iterative servers 27 / 47

18



Processes: Servers General design issues

Contacting a server

Observation: most services are tied to a specific port

ftp-data 20 File Transfer [Default Data]
ftp 21 File Transfer [Control]
telnet 23 Telnet
smtp 25 Simple Mail Transfer
www 80 Web (HTTP)

Dynamically assigning an end point

End-point
table

2. Request
service

Server machine

Client machine

Client

Server

Daemon

Register
end point

1. Ask for
end point

2. Continue
service

Server machine

Client machine

Client

Specific
server

Super-
server

Create server
and hand off
request

1. Request
service

Contacting a server: end points 28 / 47

19
(A) (B)



Processes: Servers Server clusters

Three different tiers

Common organization

Logical switch
(possibly multiple)

Application/compute servers Distributed
file/database

system

Client requests

Dispatched
request

First tier Second tier Third tier

Crucial element
The first tier is generally responsible for passing requests to an appropriate
server: request dispatching

Local-area clusters 32 / 47

20



Processes: Servers Server clusters

Request Handling

Observation
Having the first tier handle all communication from/to the cluster may lead to a
bottleneck.

A solution: TCP handoff

SwitchClient

Server

Server

Request
Request

(handed off)

Response
Logically a
single TCP
connection

Local-area clusters 33 / 47

21



Processes: Servers Server clusters

Server clusters

The front end may easily get overloaded: special measures may be needed
Transport-layer switching: Front end simply passes the TCP request to
one of the servers, taking some performance metric into account.
Content-aware distribution: Front end reads the content of the request
and then selects the best server.

Combining two solutions

Application

server

Application

server

SwitchClient

Distributor

Distributor

Dis-
patcher

1. Pass setup request
to a distributor

2. Dispatcher selects
server

3. Hand off
TCP connection

4. Inform
switchSetup request

Other messages

5. Forward
other
messages

6. Server responses

Local-area clusters 34 / 47

22



Processes: Servers Server clusters

When servers are spread across the Internet

Observation
Spreading servers across the Internet may introduce administrative problems.
These can be largely circumvented by using data centers from a single cloud
provider.

Request dispatching: if locality is important
Common approach: use DNS:

1 Client looks up specific service through DNS - client’s IP address is part
of request

2 DNS server keeps track of replica servers for the requested service, and
returns address of most local server.

Client transparency
To keep client unaware of distribution, let DNS resolver act on behalf of client.
Problem is that the resolver may actually be far from local to the actual client.

Wide-area clusters 35 / 47

23



Processes: Servers Server clusters

Distributed servers with stable IPv6 address(es)

Transparency through Mobile IP

Believes it is
connected to X

Believes location
of X is CA1

Client 1

Believes it is
connected to X

Believes location
of X is CA2

Client 2

Server 1

Server 2

Internet

Knows that C ient 1l
believes it is X

Knows that C ient 2l
believes it is X

Distributed server XBelieves server
has address HA

Believes server
has address HA

Access point
with address CA1

Access point
with address CA2

APP

TCP

MIPv6

IP

APP

TCP

MIPv6

IP

Wide-area clusters 36 / 47

24



Processes: Servers Server clusters

Distributed servers: addressing details

Essence: Clients having MobileIPv6 can transparently set up a connection to
any peer

Client C sets up connection to IPv6 home address HA

HA is maintained by a (network-level) home agent, which hands off the
connection to a registered care-of address CA.

C can then apply route optimization by directly forwarding packets to
address CA (i.e., without the handoff through the home agent).

Collaborative distributed systems
Origin server maintains a home address, but hands off connections to address
of collaborating peer ) origin server and peer appear as one server.

Wide-area clusters 37 / 47

25


