FACULTY OF INFORMATION TECHNOLOGY

Distributed Systems

Coordination-**Logical Clocks**

2

Sometimes we simply need the exact time, not just an ordering. communication are the world. etimes we simply need the exact time, not just an ordering.

Coordination: Clock synchronization entitled and the entries of the entries of the Physical clocks

Physical clocks Solution: Universal Coordinated Time (UTC) and Universal Coordinated Time (UTC) and Universal Coordinated Time
Solution: Universal Coordinated Time (UTC) and Universal Coordinated Time (UTC) and UTC (UTC) and UTC) and UTC
 Based on the number of transitions per second of the cesium 133 atom

Problem At present, the real time is taken as the average of some 50 cesium

Solution: Universal Coordinated Time (UTC) is broadcast thro α racy of about ± 0.5 ms. **Note** accuracy of about *±*0*.*5 ms.

clocks are the world. The world the worl
The world the world

UTC is broadcast through short-wave radio and satellite. Satellites can give an

The Happened-before relationship

Issue

- If *a* and *b* are two events in the same process, and *a* comes before *b*, then $a \rightarrow b$.
- **If a is the sending of a message, and b is the receipt of that message,** then $a \rightarrow b$
- **•** If $a \rightarrow b$ and $b \rightarrow c$, then $a \rightarrow c$

What usually matters is not that all processes agree on exactly what time it is, but that they agree on the order in which events occur. Requires a notion of ordering.

The happened-before relation

Coordination: Logical clocks Lamport's logical clocks

Logical clocks

Problem

Attach a timestamp *C*(*e*) to each event *e*, satisfying the following properties: P1 If *a* and *b* are two events in the same process, and $a \rightarrow b$, then we

- demand that $C(a) < C(b)$.
- message, then also $C(a) < C(b)$.

How do we maintain a global view on the system's behavior that is consistent with the happened-before relation?

P2 If *a* corresponds to sending a message *m*, and *b* to the receipt of that

Problem

How to attach a timestamp to an event when there's no global clock \Rightarrow maintain a consistent set of logical clocks, one per process.

Logical clocks: solution

Each process *Pi* maintains a local counter *Ci* and adjusts this counter

- ¹ For each new event that takes place within *Pi*, *Ci* is incremented by 1.
- ² Each time a message *m* is sent by process *Pi*, the message receives a t *imestamp* $ts(m) = C_i$ *.*
- ³ Whenever a message *m* is received by a process *Pj*, *Pj* adjusts its local counter *Cj* to max*{Cj,ts*(*m*)*}*; then executes step 1 before passing *m* to the application.

Notes

- Property P1 is satisfied by (1); Property P2 by (2) and (3).
- \bullet It can still occur that two events happen at the same time. Avoid this by breaking ties through process IDs.

Logical clocks: example

Consider three processes with event counters operating at different rates

Coordination: Logical clocks Lamport's logical clocks

Logical clocks: where implemented

Adjustments implemented in middleware

Adjust local clock

Message is received

Adjust local clock and timestamp message

Application sends message

Middleware sends message

Application layer

Middleware layer

Network layer

Message is delivered to application

1. Before executing an event (i.e., sending a message over the network, delivering a message to an application, or some other internal event), P_i

2. When process P_i sends a message m to process P_i , it sets m's timestamp

3. Upon the receipt of a message m, process P_i adjusts its own local counter as $C_i \leftarrow \max\{C_i, ts(m)\}\$ after which it then executes the first step and

- increments $C_i: C_i \leftarrow C_i + 1$.
- $ts(m)$ equal to C_i after having executed the previous step.
- delivers the message to the application.

To implement Lamport's logical clocks, each process P i maintains a *local* counter C_i. These counters are updated according to the following steps

Example: Total-ordered multicast

-
- *P2* increments account by 1%
- **There are two replicas**

everywhere

In absence of proper synchronization: replica #1 \leftarrow \$1111, while replica #2 \leftarrow \$1110.

Result

Example: Total-ordered multicast

Solution

- Process *Pi* sends timestamped message *mi* to all others. The message itself is put in a local queue *queue_i*.
- Any incoming message at *Pj* is queued in *queuej*, according to its timestamp, and acknowledged to every other process.

P_i passes a message *m_i* to its application if:

- (1) *mi* is at the head of *queuej*
- (2) for each process P_k , there is a message m_k in *queue_i* with a larger timestamp.

Note

We are assuming that communication is reliable and FIFO ordered.

Coordination: Logical clocks Vector clocks

Vector clocks

Observation

Lamport's clocks do not guarantee that if C *b*.

Concurrent message transmission using logical clocks

$$
G(a) < C(b)
$$
 that a causally preceded

Observation

Event *a*: m_1 is received at $T = 16$; Event *b*: m_2 is sent at $T = 20$.

Coordination: Logical clocks Vector clocks

Vector clocks

Observation

Lamport's clocks do not guarantee that if *C*(*a*) *< C*(*b*) that *a* causally preceded *b*.

Concurrent message transmission using logical clocks

Observation

Note

We cannot conclude that *a* causally precedes *b*.

Event *a*: m_1 is received at $T = 16$; Event *b*: m_2 is sent at $T = 20$.

13

- *VCi*[*i*] is the local logical clock at process *Pi*.
- \bullet If $VC_i[j] = k$ then P_i knows that k events have occurred at P_i .

Capturing causality

Solution: each *Pi* maintains a vector *VCi*

Maintaining vector clocks

- Before executing an event P_i executes $VC_i[i] \leftarrow VC_i[i] + 1$.
- ² When process *Pi* sends a message *m* to *Pj*, it sets *m*'s (vector) timestamp *ts*(*m*) equal to VC_i after having executed step 1.
- ³ Upon the receipt of a message *m*, process *Pj* sets and then delivers the message to the application.

 $VC_j[k] \leftarrow \max\{VC_j[k], ts(m)[k]\}$ for each *k*, after which it executes step 1

14

Vector clocks: Example

In Figure (a), P₂ sends a message m₁ at logical time $VC₂ = (0, 1, 0)$ to process P_1 . Message m_1 thus receives timestamp $ts(m_1)=(0, 1, 0)$. Upon its receipt, P_1 adjusts its logical time to $VC_1 \leftarrow (1, 1, 0)$ and delivers it. Message m_2 is sent by P_1 to P_3 with timestamp $ts(m_2)=(2, 1, 0)$. Before P_1 sends another message, m3, an event happens at P_1 , eventually leading to timestamping m₃ with value $(4, 1, 0)$. After receiving m₃, process P_2 sends message m_4 to P_3 , with timestamp $ts(m_4) = (4, 3, 0)$.

Now consider the situation shown in Figure \qquad (b). Here, we have delayed sending message m₂ until after message m₃ has been sent, and after the event had taken place. It is not difficult to see that $ts(m_2)=(4, 1, 0)$, while $ts(m_4)=(2, 3, 0).$

15

16

Causally ordered multicasting

Observation

We can now ensure that a message is delivered only if all causally preceding messages have already been delivered.

Adjustment

Pi increments *VCi*[*i*] only when sending a message, and *Pj* "adjusts" *VCj* when receiving a message (i.e., effectively does not change *VCj*[*j*]).

Pj postpones delivery of *m* until:

- **1** t **s** $(m)[i] = VC_{i}[i] + 1$
- 2 *ts*(*m*)[k] \leq *VC_j*[k] for all $k \neq i$

As an example, consider three processes P_1 , P_2 , and P_3 as shown in Figure At local time $(1, 0, 0)$, P_1 sends message m to the other two processes. Note that $ts(m)=(1, 0, 0)$. Its receipt and subsequent delivery by P₂, will bring the logical clock at P_2 to $(1, 0, 0)$, effectively indicating that it has received one message from P_1 , has itself sent no message so far, and has not yet received a message from P_3 . P₂ then decides to send m^{*}, at updated time (1, 1, 0), which arrives at P₃ *sooner* than m. fhan m.

When comparing the timestamp of m with its current time, which is $(0, 0, 0)$, P_3 concludes that it is still missing a message from P_1 which P_2 apparently had

18

Figure 6.14: Enforcing causal communication.

 $\begin{bmatrix} \text{and with any tree are given by } \text{D} & \text{odd } \text{linear tree} \end{bmatrix}$ delivered before sending m^* . P₃ therefore decides to postpone the delivery of m^* (and will also not adjust its local, logical clock). Later, after m has been received and delivered by P_3 , which brings its local clock to $(1,0,0)$, P_3 can deliver message m^* and also update its clock.