
FACULTY OF INFORMATION TECHNOLOGY

Distributed Systems

Coordination-Logical Clocks

2

Coordination: Clock synchronization Physical clocks

Physical clocks

Problem
Sometimes we simply need the exact time, not just an ordering.

Solution: Universal Coordinated Time (UTC)
Based on the number of transitions per second of the cesium 133 atom
(pretty accurate).
At present, the real time is taken as the average of some 50 cesium
clocks around the world.
Introduces a leap second from time to time to compensate that days are
getting longer.

Note
UTC is broadcast through short-wave radio and satellite. Satellites can give an
accuracy of about ±0.5 ms.

2 / 49

Coordination: Clock synchronization Physical clocks

Physical clocks

Problem
Sometimes we simply need the exact time, not just an ordering.

Solution: Universal Coordinated Time (UTC)
Based on the number of transitions per second of the cesium 133 atom
(pretty accurate).
At present, the real time is taken as the average of some 50 cesium
clocks around the world.
Introduces a leap second from time to time to compensate that days are
getting longer.

Note
UTC is broadcast through short-wave radio and satellite. Satellites can give an
accuracy of about ±0.5 ms.

2 / 49

3

Coordination: Logical clocks Lamport’s logical clocks

The Happened-before relationship

Issue
What usually matters is not that all processes agree on exactly what time it is,
but that they agree on the order in which events occur. Requires a notion of
ordering.

The happened-before relation
If a and b are two events in the same process, and a comes before b,
then a ! b.
If a is the sending of a message, and b is the receipt of that message,
then a ! b

If a ! b and b ! c, then a ! c

Note
This introduces a partial ordering of events in a system with concurrently
operating processes.

8 / 49

4

Coordination: Logical clocks Lamport’s logical clocks

Logical clocks

Problem
How do we maintain a global view on the system’s behavior that is consistent
with the happened-before relation?

Attach a timestamp C(e) to each event e, satisfying the following properties:

P1 If a and b are two events in the same process, and a ! b, then we
demand that C(a)< C(b).

P2 If a corresponds to sending a message m, and b to the receipt of that
message, then also C(a)< C(b).

Problem
How to attach a timestamp to an event when there’s no global clock)
maintain a consistent set of logical clocks, one per process.

9 / 49

5

Coordination: Logical clocks Lamport’s logical clocks

Logical clocks: solution

Each process Pi maintains a local counter Ci and adjusts this counter
1 For each new event that takes place within Pi , Ci is incremented by 1.
2 Each time a message m is sent by process Pi , the message receives a

timestamp ts(m) = Ci .
3 Whenever a message m is received by a process Pj , Pj adjusts its local

counter Cj to max{Cj , ts(m)}; then executes step 1 before passing m to
the application.

Notes
Property P1 is satisfied by (1); Property P2 by (2) and (3).
It can still occur that two events happen at the same time. Avoid this by
breaking ties through process IDs.

10 / 49

6

Coordination: Logical clocks Lamport’s logical clocks

Logical clocks: example

Consider three processes with event counters operating at different rates

0

6

12

18

24

30

36

42

48

54

60

0

8

16

24

32

40

48

56

64

72

80

0

10

20

30

40

50

60

70

80

90

100

m
1

m
2

m
3

m
4

P
1

P
2

P
3

m1

m2

m3

m4

0

6

12

18

24

30

36

42

48

0

8

16

24

32

40

48

0

10

20

30

40

50

60

70

80

90

100

P adjusts2

its clock

P adjusts1

its clock

P1 P2 P3

70

76

61

69

77

85

11 / 49

7

Coordination: Logical clocks Lamport’s logical clocks

Logical clocks: where implemented

Adjustments implemented in middleware

Adjust local clock

Message is received

Adjust local clock
and timestamp message

Application sends message

Middleware sends message

Application layer

Middleware layer

Network layer

Message is delivered
to application

12 / 49

8

312 CHAPTER 6. COORDINATION

starting time, 6, in it, process P2 will conclude that it took 10 ticks to make the
journey. This value is certainly possible. According to this reasoning, message
m2 from P2 to P3 takes 16 ticks, again a plausible value.

Now consider message m3. It leaves process P3 at 60 and arrives at P2 at
56. Similarly, message m4 from P2 to P1 leaves at 64 and arrives at 54. These
values are clearly impossible. It is this situation that must be prevented.

Lamport’s solution follows directly from the happens-before relation. Since
m3 left at 60, it must arrive at 61 or later. Therefore, each message carries the
sending time according to the sender’s clock. When a message arrives and
the receiver’s clock shows a value prior to the time the message was sent,
the receiver fast forwards its clock to be one more than the sending time. In
Figure 6.8, we see that m3 now arrives at 61. Similarly, m4 arrives at 70.

Let us formulate this procedure more precisely. At this point, it is impor-
tant to distinguish three different layers of software, as we already encountered
in Chapter 1: the network, a middleware layer, and an application layer, as
shown in Figure 6.9 What follows is typically part of the middleware layer.

Figure 6.9: The positioning of Lamport’s logical clocks in distributed systems.

1. Before executing an event (i.e., sending a message over the network,
delivering a message to an application, or some other internal event), Pi

increments Ci: Ci Ci + 1.
2. When process Pi sends a message m to process Pj, it sets m’s timestamp

ts(m) equal to Ci after having executed the previous step.
3. Upon the receipt of a message m, process Pj adjusts its own local counter

as Cj max{Cj, ts(m)} after which it then executes the first step and
delivers the message to the application.

In some situations, an additional requirement is desirable: no two events ever
occur at exactly the same time. To achieve this goal, we also use the unique

DS 3.01pre downloaded by HUSNI@TRUNOJOYO.AC.ID

312 CHAPTER 6. COORDINATION

starting time, 6, in it, process P2 will conclude that it took 10 ticks to make the
journey. This value is certainly possible. According to this reasoning, message
m2 from P2 to P3 takes 16 ticks, again a plausible value.

Now consider message m3. It leaves process P3 at 60 and arrives at P2 at
56. Similarly, message m4 from P2 to P1 leaves at 64 and arrives at 54. These
values are clearly impossible. It is this situation that must be prevented.

Lamport’s solution follows directly from the happens-before relation. Since
m3 left at 60, it must arrive at 61 or later. Therefore, each message carries the
sending time according to the sender’s clock. When a message arrives and
the receiver’s clock shows a value prior to the time the message was sent,
the receiver fast forwards its clock to be one more than the sending time. In
Figure 6.8, we see that m3 now arrives at 61. Similarly, m4 arrives at 70.

Let us formulate this procedure more precisely. At this point, it is impor-
tant to distinguish three different layers of software, as we already encountered
in Chapter 1: the network, a middleware layer, and an application layer, as
shown in Figure 6.9 What follows is typically part of the middleware layer.

Figure 6.9: The positioning of Lamport’s logical clocks in distributed systems.

1. Before executing an event (i.e., sending a message over the network,
delivering a message to an application, or some other internal event), Pi

increments Ci: Ci Ci + 1.
2. When process Pi sends a message m to process Pj, it sets m’s timestamp

ts(m) equal to Ci after having executed the previous step.
3. Upon the receipt of a message m, process Pj adjusts its own local counter

as Cj max{Cj, ts(m)} after which it then executes the first step and
delivers the message to the application.

In some situations, an additional requirement is desirable: no two events ever
occur at exactly the same time. To achieve this goal, we also use the unique

DS 3.01pre downloaded by HUSNI@TRUNOJOYO.AC.ID

 To implement Lamport’s logical clocks, each process P i maintains a local
counter C i . These counters are updated according to the following steps

9

Coordination: Logical clocks Lamport’s logical clocks

Example: Total-ordered multicast

Concurrent updates on a replicated database are seen in the same order
everywhere

P1 adds $100 to an account (initial value: $1000)
P2 increments account by 1%
There are two replicas

Update 1 Update 2

Update 1 is
performed before

update 2

Update 2 is
performed before

update 1

Replicated database

Result
In absence of proper synchronization:
replica #1 $1111, while replica #2 $1110.

Example: Total-ordered multicasting 13 / 49

10

Coordination: Logical clocks Lamport’s logical clocks

Example: Total-ordered multicast

Solution
Process Pi sends timestamped message mi to all others. The message
itself is put in a local queue queuei .
Any incoming message at Pj is queued in queuej , according to its
timestamp, and acknowledged to every other process.

Pj passes a message mi to its application if:

(1) mi is at the head of queuej

(2) for each process Pk , there is a message mk in queuej with a larger
timestamp.

Note
We are assuming that communication is reliable and FIFO ordered.

Example: Total-ordered multicasting 14 / 49

11

Coordination: Logical clocks Vector clocks

Vector clocks

Observation
Lamport’s clocks do not guarantee that if C(a)< C(b) that a causally preceded
b.

Concurrent message transmission
using logical clocks

m
1

m
3

m
2

m
4

m
5

0

6

12

18

24

30

36

42

48

0

8

16

24

32

40

48

0

10

20

30

40

50

60

70

80

90

100

P
1

P
2

P
3

70

76

61

69

77

85

Observation
Event a: m1 is received at T = 16;
Event b: m2 is sent at T = 20.

Note
We cannot conclude that a causally
precedes b.

18 / 49

12

Coordination: Logical clocks Vector clocks

Vector clocks

Observation
Lamport’s clocks do not guarantee that if C(a)< C(b) that a causally preceded
b.

Concurrent message transmission
using logical clocks

m
1

m
3

m
2

m
4

m
5

0

6

12

18

24

30

36

42

48

0

8

16

24

32

40

48

0

10

20

30

40

50

60

70

80

90

100

P
1

P
2

P
3

70

76

61

69

77

85

Observation
Event a: m1 is received at T = 16;
Event b: m2 is sent at T = 20.

Note
We cannot conclude that a causally
precedes b.

18 / 49

13

Coordination: Logical clocks Vector clocks

Capturing causality

Solution: each Pi maintains a vector VCi

VCi [i] is the local logical clock at process Pi .

If VCi [j] = k then Pi knows that k events have occurred at Pj .

Maintaining vector clocks

1 Before executing an event Pi executes VCi [i] VCi [i]+1.
2 When process Pi sends a message m to Pj , it sets m’s (vector)

timestamp ts(m) equal to VCi after having executed step 1.
3 Upon the receipt of a message m, process Pj sets

VCj [k] max{VCj [k], ts(m)[k]} for each k , after which it executes step 1
and then delivers the message to the application.

20 / 49

14

Coordination: Logical clocks Vector clocks

Vector clocks: Example

Capturing potential causality when exchanging messages
P1

P2

P3

(0,1,0)

(1,1,0) (2,1,0) (3,1,0) (4,1,0)

(4,2,0)

(4,3,0)

(4,3,2)(2,1,1)

m1 m2 m3

m4

P1

P2

P3

(0,1,0)

(1,1,0) (4,1,0)(3,1,0)(2,1,0)

(2,2,0)

(2,3,0)

(2,3,1) (4,3,2)

m1 m2m3

m4

(a) (b)

Analysis

Situation ts(m2) ts(m4) ts(m2) ts(m2) Conclusion
< >

ts(m4) ts(m4)

(a) (2,1,0) (4,3,0) Yes No m2 may causally precede m4

(b) (4,1,0) (2,3,0) No No m2 and m4 may conflict

21 / 49

15

6.2. LOGICAL CLOCKS 319

To see what this means, consider Figure 6.13 which shows three processes.
In Figure 6.13(a), P2 sends a message m1 at logical time VC2 = (0, 1, 0) to
process P1. Message m1 thus receives timestamp ts(m1) = (0, 1, 0). Upon
its receipt, P1 adjusts its logical time to VC1 (1, 1, 0) and delivers it. Mes-
sage m2 is sent by P1 to P3 with timestamp ts(m2) = (2, 1, 0). Before P1

sends another message, m3, an event happens at P1, eventually leading to
timestamping m3 with value (4, 1, 0). After receiving m3, process P2 sends
message m4 to P3, with timestamp ts(m4) = (4, 3, 0).

(a)

(b)

Figure 6.13: Capturing potential causality when exchanging messages.

Now consider the situation shown in Figure 6.13(b). Here, we have delayed
sending message m2 until after message m3 has been sent, and after the
event had taken place. It is not difficult to see that ts(m2) = (4, 1, 0), while
ts(m4) = (2, 3, 0). Compared to Figure 6.13(a), we have the following situation:

Situation ts(m2) ts(m4) ts(m2) ts(m2) Conclusion
< >

ts(m4) ts(m4)

Figure 6.13(a) (2, 1, 0) (4, 3, 0) Yes No m2 may causally precede m4

Figure 6.13(b) (4, 1, 0) (2, 3, 0) No No m2 and m4 may conflict

We use the notation ts(a) < ts(b) if and only if for all k, ts(a)[k]  ts(b)[k]
and there is at least one index k0 for which ts(a)[k0] < ts(b)[k0]. Thus, by using
vector clocks, process P3 can detect whether m4 may be causally dependent
on m2, or whether there may be a potential conflict. Note, by the way, that

downloaded by HUSNI@TRUNOJOYO.AC.ID DS 3.01pre

6.2. LOGICAL CLOCKS 319

To see what this means, consider Figure 6.13 which shows three processes.
In Figure 6.13(a), P2 sends a message m1 at logical time VC2 = (0, 1, 0) to
process P1. Message m1 thus receives timestamp ts(m1) = (0, 1, 0). Upon
its receipt, P1 adjusts its logical time to VC1 (1, 1, 0) and delivers it. Mes-
sage m2 is sent by P1 to P3 with timestamp ts(m2) = (2, 1, 0). Before P1

sends another message, m3, an event happens at P1, eventually leading to
timestamping m3 with value (4, 1, 0). After receiving m3, process P2 sends
message m4 to P3, with timestamp ts(m4) = (4, 3, 0).

(a)

(b)

Figure 6.13: Capturing potential causality when exchanging messages.

Now consider the situation shown in Figure 6.13(b). Here, we have delayed
sending message m2 until after message m3 has been sent, and after the
event had taken place. It is not difficult to see that ts(m2) = (4, 1, 0), while
ts(m4) = (2, 3, 0). Compared to Figure 6.13(a), we have the following situation:

Situation ts(m2) ts(m4) ts(m2) ts(m2) Conclusion
< >

ts(m4) ts(m4)

Figure 6.13(a) (2, 1, 0) (4, 3, 0) Yes No m2 may causally precede m4

Figure 6.13(b) (4, 1, 0) (2, 3, 0) No No m2 and m4 may conflict

We use the notation ts(a) < ts(b) if and only if for all k, ts(a)[k]  ts(b)[k]
and there is at least one index k0 for which ts(a)[k0] < ts(b)[k0]. Thus, by using
vector clocks, process P3 can detect whether m4 may be causally dependent
on m2, or whether there may be a potential conflict. Note, by the way, that

downloaded by HUSNI@TRUNOJOYO.AC.ID DS 3.01pre

6.2. LOGICAL CLOCKS 319

To see what this means, consider Figure 6.13 which shows three processes.
In Figure 6.13(a), P2 sends a message m1 at logical time VC2 = (0, 1, 0) to
process P1. Message m1 thus receives timestamp ts(m1) = (0, 1, 0). Upon
its receipt, P1 adjusts its logical time to VC1 (1, 1, 0) and delivers it. Mes-
sage m2 is sent by P1 to P3 with timestamp ts(m2) = (2, 1, 0). Before P1

sends another message, m3, an event happens at P1, eventually leading to
timestamping m3 with value (4, 1, 0). After receiving m3, process P2 sends
message m4 to P3, with timestamp ts(m4) = (4, 3, 0).

(a)

(b)

Figure 6.13: Capturing potential causality when exchanging messages.

Now consider the situation shown in Figure 6.13(b). Here, we have delayed
sending message m2 until after message m3 has been sent, and after the
event had taken place. It is not difficult to see that ts(m2) = (4, 1, 0), while
ts(m4) = (2, 3, 0). Compared to Figure 6.13(a), we have the following situation:

Situation ts(m2) ts(m4) ts(m2) ts(m2) Conclusion
< >

ts(m4) ts(m4)

Figure 6.13(a) (2, 1, 0) (4, 3, 0) Yes No m2 may causally precede m4

Figure 6.13(b) (4, 1, 0) (2, 3, 0) No No m2 and m4 may conflict

We use the notation ts(a) < ts(b) if and only if for all k, ts(a)[k]  ts(b)[k]
and there is at least one index k0 for which ts(a)[k0] < ts(b)[k0]. Thus, by using
vector clocks, process P3 can detect whether m4 may be causally dependent
on m2, or whether there may be a potential conflict. Note, by the way, that

downloaded by HUSNI@TRUNOJOYO.AC.ID DS 3.01pre

6.2. LOGICAL CLOCKS 319

To see what this means, consider Figure 6.13 which shows three processes.
In Figure 6.13(a), P2 sends a message m1 at logical time VC2 = (0, 1, 0) to
process P1. Message m1 thus receives timestamp ts(m1) = (0, 1, 0). Upon
its receipt, P1 adjusts its logical time to VC1 (1, 1, 0) and delivers it. Mes-
sage m2 is sent by P1 to P3 with timestamp ts(m2) = (2, 1, 0). Before P1

sends another message, m3, an event happens at P1, eventually leading to
timestamping m3 with value (4, 1, 0). After receiving m3, process P2 sends
message m4 to P3, with timestamp ts(m4) = (4, 3, 0).

(a)

(b)

Figure 6.13: Capturing potential causality when exchanging messages.

Now consider the situation shown in Figure 6.13(b). Here, we have delayed
sending message m2 until after message m3 has been sent, and after the
event had taken place. It is not difficult to see that ts(m2) = (4, 1, 0), while
ts(m4) = (2, 3, 0). Compared to Figure 6.13(a), we have the following situation:

Situation ts(m2) ts(m4) ts(m2) ts(m2) Conclusion
< >

ts(m4) ts(m4)

Figure 6.13(a) (2, 1, 0) (4, 3, 0) Yes No m2 may causally precede m4

Figure 6.13(b) (4, 1, 0) (2, 3, 0) No No m2 and m4 may conflict

We use the notation ts(a) < ts(b) if and only if for all k, ts(a)[k]  ts(b)[k]
and there is at least one index k0 for which ts(a)[k0] < ts(b)[k0]. Thus, by using
vector clocks, process P3 can detect whether m4 may be causally dependent
on m2, or whether there may be a potential conflict. Note, by the way, that

downloaded by HUSNI@TRUNOJOYO.AC.ID DS 3.01pre

16

Coordination: Logical clocks Vector clocks

Causally ordered multicasting

Observation
We can now ensure that a message is delivered only if all causally preceding
messages have already been delivered.

Adjustment
Pi increments VCi [i] only when sending a message, and Pj “adjusts” VCj when
receiving a message (i.e., effectively does not change VCj [j]).

Pj postpones delivery of m until:

1 ts(m)[i] = VCj [i]+1
2 ts(m)[k] VCj [k] for all k 6= i

22 / 49

17

Coordination: Logical clocks Vector clocks

Causally ordered multicasting

Enforcing causal communication

P1

P2

P3

(0,0,0) (1,0,0)

(1,1,0)

(1,0,0)

(1,0,0)

(1,1,0)

(1,1,0)

m

m*

Example
Take VC3 = [0,2,2], ts(m) = [1,3,0] from P1. What information does P3 have,
and what will it do when receiving m (from P1)?

23 / 49

18

320 CHAPTER 6. COORDINATION

without knowing the actual information contained in messages, it is not
possible to state with certainty that there is indeed a causal relationship, or
perhaps a conflict.

Note 6.4 (Advanced: Enforcing causal communication)
Using vector clocks, it is now possible to ensure that a message is delivered only
if all messages that may have causally precede it have been received as well.
To enable such a scheme, we will assume that messages are multicast within a
group of processes. Note that this causal-ordered multicasting is weaker than
total-ordered multicasting. Specifically, if two messages are not in any way related
to each other, we do not care in which order they are delivered to applications.
They may even be delivered in different order at different locations.

For enforcing causal message delivery, we assume that clocks are adjusted
only when sending and delivering messages (note, again, that messages are not
adjusted when they are received by a process, but only when they are delivered
to an application). In particular, upon sending a message, process Pi will only
increment VCi[i] by 1. When it delivers a message m with timestamp ts(m), it
only adjusts VCi[k] to max{VCi[k], ts(m)[k]} for each k.

Now suppose that Pj receives a message m from Pi with (vector) timestamp
ts(m). The delivery of the message to the application layer will then be delayed
until the following two conditions are met:

1. ts(m)[i] = VCj[i] + 1
2. ts(m)[k]  VCj[k] for all k 6= i

The first condition states that m is the next message that Pj was expecting from
process Pi. The second condition states that Pj has delivered all the messages that
have been delivered by Pi when it sent message m. Note that there is no need for
process Pj to delay the delivery of its own messages.

Figure 6.14: Enforcing causal communication.

As an example, consider three processes P1, P2, and P3 as shown in Figure 6.14.
At local time (1, 0, 0), P1 sends message m to the other two processes. Note that
ts(m) = (1, 0, 0). Its receipt and subsequent delivery by P2, will bring the logical
clock at P2 to (1, 0, 0), effectively indicating that it has received one message from
P1, has itself sent no message so far, and has not yet received a message from P3.
P2 then decides to send m⇤, at updated time (1, 1, 0), which arrives at P3 sooner
than m.

When comparing the timestamp of m with its current time, which is (0, 0, 0),
P3 concludes that it is still missing a message from P1 which P2 apparently had

DS 3.01pre downloaded by HUSNI@TRUNOJOYO.AC.ID

320 CHAPTER 6. COORDINATION

without knowing the actual information contained in messages, it is not
possible to state with certainty that there is indeed a causal relationship, or
perhaps a conflict.

Note 6.4 (Advanced: Enforcing causal communication)
Using vector clocks, it is now possible to ensure that a message is delivered only
if all messages that may have causally precede it have been received as well.
To enable such a scheme, we will assume that messages are multicast within a
group of processes. Note that this causal-ordered multicasting is weaker than
total-ordered multicasting. Specifically, if two messages are not in any way related
to each other, we do not care in which order they are delivered to applications.
They may even be delivered in different order at different locations.

For enforcing causal message delivery, we assume that clocks are adjusted
only when sending and delivering messages (note, again, that messages are not
adjusted when they are received by a process, but only when they are delivered
to an application). In particular, upon sending a message, process Pi will only
increment VCi[i] by 1. When it delivers a message m with timestamp ts(m), it
only adjusts VCi[k] to max{VCi[k], ts(m)[k]} for each k.

Now suppose that Pj receives a message m from Pi with (vector) timestamp
ts(m). The delivery of the message to the application layer will then be delayed
until the following two conditions are met:

1. ts(m)[i] = VCj[i] + 1
2. ts(m)[k]  VCj[k] for all k 6= i

The first condition states that m is the next message that Pj was expecting from
process Pi. The second condition states that Pj has delivered all the messages that
have been delivered by Pi when it sent message m. Note that there is no need for
process Pj to delay the delivery of its own messages.

Figure 6.14: Enforcing causal communication.

As an example, consider three processes P1, P2, and P3 as shown in Figure 6.14.
At local time (1, 0, 0), P1 sends message m to the other two processes. Note that
ts(m) = (1, 0, 0). Its receipt and subsequent delivery by P2, will bring the logical
clock at P2 to (1, 0, 0), effectively indicating that it has received one message from
P1, has itself sent no message so far, and has not yet received a message from P3.
P2 then decides to send m⇤, at updated time (1, 1, 0), which arrives at P3 sooner
than m.

When comparing the timestamp of m with its current time, which is (0, 0, 0),
P3 concludes that it is still missing a message from P1 which P2 apparently had

DS 3.01pre downloaded by HUSNI@TRUNOJOYO.AC.ID

6.3. MUTUAL EXCLUSION 321

delivered before sending m⇤. P3 therefore decides to postpone the delivery of m⇤

(and will also not adjust its local, logical clock). Later, after m has been received
and delivered by P3, which brings its local clock to (1, 0, 0), P3 can deliver message
m⇤ and also update its clock.

A note on ordered message delivery. Some middleware systems, notably ISIS
and its successor Horus [Birman and van Renesse, 1994], provide support for
total-ordered and causal-ordered (reliable) multicasting. There has been some
controversy whether such support should be provided as part of the message-
communication layer, or whether applications should handle ordering (see, e.g.,
Cheriton and Skeen [1993]; Birman [1994]). Matters have not been settled, but
more important is that the arguments still hold today.

There are two main problems with letting the middleware deal with message
ordering. First, because the middleware cannot tell what a message actually
contains, only potential causality is captured. For example, two messages from the
same sender that are completely independent will always be marked as causally
related by the middleware layer. This approach is overly restrictive and may lead
to efficiency problems.

A second problem is that not all causality may be captured. Consider an
electronic bulletin board. Suppose Alice posts an article. If she then phones Bob
telling about what she just wrote, Bob may post another article as a reaction
without having seen Alice’s posting on the board. In other words, there is a
causality between Bob’s posting and that of Alice due to external communication.
This causality is not captured by the bulletin board system.

In essence, ordering issues, like many other application-specific communi-
cation issues, can be adequately solved by looking at the application for which
communication is taking place. This is also known as the end-to-end argument in
systems design [Saltzer et al., 1984]. A drawback of having only application-level
solutions is that a developer is forced to concentrate on issues that do not immedi-
ately relate to the core functionality of the application. For example, ordering may
not be the most important problem when developing a messaging system such as
an electronic bulletin board. In that case, having an underlying communication
layer handle ordering may turn out to be convenient. We will come across the
end-to-end argument a number of times.

6.3 Mutual exclusion

Fundamental to distributed systems is the concurrency and collaboration
among multiple processes. In many cases, this also means that processes
will need to simultaneously access the same resources. To prevent that such
concurrent accesses corrupt the resource, or make it inconsistent, solutions are
needed to grant mutual exclusive access by processes. In this section, we take
a look at some important and representative distributed algorithms that have
been proposed. Surveys of distributed algorithms for mutual exclusion are

downloaded by HUSNI@TRUNOJOYO.AC.ID DS 3.01pre

6.3. MUTUAL EXCLUSION 321

delivered before sending m⇤. P3 therefore decides to postpone the delivery of m⇤

(and will also not adjust its local, logical clock). Later, after m has been received
and delivered by P3, which brings its local clock to (1, 0, 0), P3 can deliver message
m⇤ and also update its clock.

A note on ordered message delivery. Some middleware systems, notably ISIS
and its successor Horus [Birman and van Renesse, 1994], provide support for
total-ordered and causal-ordered (reliable) multicasting. There has been some
controversy whether such support should be provided as part of the message-
communication layer, or whether applications should handle ordering (see, e.g.,
Cheriton and Skeen [1993]; Birman [1994]). Matters have not been settled, but
more important is that the arguments still hold today.

There are two main problems with letting the middleware deal with message
ordering. First, because the middleware cannot tell what a message actually
contains, only potential causality is captured. For example, two messages from the
same sender that are completely independent will always be marked as causally
related by the middleware layer. This approach is overly restrictive and may lead
to efficiency problems.

A second problem is that not all causality may be captured. Consider an
electronic bulletin board. Suppose Alice posts an article. If she then phones Bob
telling about what she just wrote, Bob may post another article as a reaction
without having seen Alice’s posting on the board. In other words, there is a
causality between Bob’s posting and that of Alice due to external communication.
This causality is not captured by the bulletin board system.

In essence, ordering issues, like many other application-specific communi-
cation issues, can be adequately solved by looking at the application for which
communication is taking place. This is also known as the end-to-end argument in
systems design [Saltzer et al., 1984]. A drawback of having only application-level
solutions is that a developer is forced to concentrate on issues that do not immedi-
ately relate to the core functionality of the application. For example, ordering may
not be the most important problem when developing a messaging system such as
an electronic bulletin board. In that case, having an underlying communication
layer handle ordering may turn out to be convenient. We will come across the
end-to-end argument a number of times.

6.3 Mutual exclusion

Fundamental to distributed systems is the concurrency and collaboration
among multiple processes. In many cases, this also means that processes
will need to simultaneously access the same resources. To prevent that such
concurrent accesses corrupt the resource, or make it inconsistent, solutions are
needed to grant mutual exclusive access by processes. In this section, we take
a look at some important and representative distributed algorithms that have
been proposed. Surveys of distributed algorithms for mutual exclusion are

downloaded by HUSNI@TRUNOJOYO.AC.ID DS 3.01pre

