Coordination-Logical Clocks

Distributed Systems

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Coordination: Clock synchronization Physical clocks

Physical clocks

Sometimes we simply need the exact time, not just an ordering.

Solution: Universal Coordinated Time (UTC) |
Note

UTC is broadcast through short-wave radio and satellite. Satellites can give an
accuracy of about 0.5 ms.

Coordination: Logical clocks Lamport’s logical clocks

The Happened-before relationship

What usually matters is not that all processes agree on exactly what time it is,
but that they agree on the order in which events occur. Requires a notion of
ordering.

The happened-before relation

@ If a and b are two events in the same process, and a comes before b,
then a — b.

@ If ais the sending of a message, and b is the receipt of that message,
thena— b

@ fa—bandb—c,thena—c

Coordination: Logical clocks Lamport’s logical clocks

Logical clocks

How do we maintain a global view on the system’s behavior that is consistent
with the happened-before relation?

Attach a timestamp C(e) to each event e, satisfying the following properties:

P1 If aand b are two events in the same process, and a — b, then we
demand that C(a) < C(b).

P2 If a corresponds to sending a message m, and b to the receipt of that

message, then also C(a) < C(b).

How to attach a timestamp to an event when there’s no global clock =
maintain a consistent set of logical clocks, one per process.

Coordination: Logical clocks Lamport’s logical clocks

Logical clocks: solution

Each process P; maintains a local counter C; and adjusts this counter

@ For each new event that takes place within P;, C; is incremented by 1.

© Each time a message m is sent by process P;, the message receives a
timestamp ts(m) = C;.

© Whenever a message mis received by a process P;, P; adjusts its local
counter C; to max{C;,ts(m)}; then executes step 1 before passing mto
the application.

Notes

@ Property P1 is satisfied by (1); Property P2 by (2) and (3).
@ It can still occur that two events happen at the same time. Avoid this by
breaking ties through process IDs.

Coordination: Logical clocks Lamport’s logical clocks

Logical clocks: example

Consider three processes with event counters operating at different rates

P. P, P, P. P, P,
0 0 0 0 0 0
Flm [F i Elm [F i
:T?:\:@ 20 :T?:\‘:@ 20
18 24 m, 30 18 24 m, 30
24 E1r 24 5| A
30 40 50 30 40 itg clock |50
36 48 60 36 . 48 / 60
---------------------------- P, adjusts
42 __5_94{ 70 42/ itd olock _@1_‘{ 70
48 o4 80 48|, 69 80
sl |72 % 0. |77 %
60 80 100 /6 85 100

Coordination: Logicaldocks Lamports logical clocks

Logical clocks: where implemented

Message is delivered
Application sends message ~ % 1 to application

Adjust local clock
and timestamp message

Adjust local clock

Middleware layer

To implement Lamport’s logical clocks, each process P i maintains a local
counter Ci. These counters are updated according to the following steps

1. Before executing an event (i.e., sending a message over the network,
delivering a message to an application, or some other internal event), P;
increments C;: C; <— C, + 1.

2. When process P; sends a message m to process P;, it sets m’s timestamp
ts(m) equal to C; after having executed the previous step.

3. Upon the receipt of a message m, process P; adjusts its own local counter
as Cj < max{(j, ts(m)} after which it then executes the first step and
delivers the message to the application.

Coordination: Logical clocks

Example: Total-ordered multicast

Lamport’s logical clocks

Concurrent updates on a replicated database are seen in the same order
everywhere

@ P, adds $100 to an account (initial value: $1000)
@ P, increments account by 1%

@ There are two replicas

Result

i Update 1

Update 1 is
performed before
update 2

—
-
- -

Replicated database

In absence of proper synchronization:

replica

1 < $1111, while replica

2 +— $1110.

Update 2

Update 2 is
performed before
update 1

Coordination: Logical clocks Lamport’s logical clocks

Example: Total-ordered multicast

Solution

@ Process P; sends timestamped message m; to all others. The message
itself is put in a local queue queue,.

@ Any incoming message at P; is queued in queue;, according to its
timestamp, and acknowledged to every other process.

(1) m; is at the head of queue;

(2) fgr each process P, there is a message my in queue; with a larger
timestamp.

Note
We are assuming that communication is reliable and FIFO ordered. J

10

Coordination: Logical clocks Vector clocks

Vector clocks

Observation

Lamport’s clocks do not guarantee that if C(a) < C(b) that a causally preceded
b.

y

Concurrent message transmission | Observation
using logical clocks Event a: my is received at T = 16;

P, P, P, Event b: mo is sent at T = 20.

B I or L 0. /

61 m 8 10

o] A m o

18 Sile— |3

11

Coordination: Logical clocks Vector clocks

Vector clocks

Observation
Lamport’s clocks do not guarantee that if C(a) < C(b) that a causally preceded
b.
_4
Concurrent message transmission | Observation
using logical clocks Event a: my is received at T = 16;
P, P, P, Event b: mois sent at T = 20.
oL oy L 0. ‘
6 m, 8 10
5| aiE] m 1% Note
18 5ila— |30
54 35l m, (40 We cannot conclude that a causally
30 0| M50 precedes b.
36 48 60 <
[il |70
48 69 30
70T |77 90
/6 85 100
4

12

Coordination: Logical clocks

Capturing causality

Solution: each P; maintains a vector VC;

Q VC/[i]

IS the local logical clock at process P;.

@ If VC;[j] = k then P; knows that k events have occurred at P;.

Maintaining vector clocks

@ Before executing an event P; executes VC;[i] < VC;[i] +1.

© When

process P; sends a message mto P;, it sets m's (vector)

timestamp ts(m) equal to VC; after having executed step 1.

© Upon the receipt of a message m, process P; sets

VCilk

and tr

< max{ VC;lk|, ts(m)[k]} for each k, after which it executes step 1
en delivers the message to the application.

Vector clocks

13

Coordination: Logical clocks Vector clocks

Vector clocks: Example

Capturing potential causality when exchanging messages

(1,1,0) (2,1,0) (3 1,0) (4,1,0) P (1,1,0) (2,1,0) (3,1,0) (4,1,0)

1 <o
m, ms, m,
(4,3,0) (2,3,0)
(0,1,0) \ (4,2,0) \ (o 1,0) (2,2,0)
m,
P,

(2,1,1) 4,3,2) 2,3,1) (4,3,2)

(a) (b)

In Figure (a), P> sends a message m; at logical time VC, = (0,1,0) to
process P1. Message m; thus receives timestamp ts(m;) = (0,1,0). Upon
its receipt, P; adjusts its logical time to VC; < (1,1,0) and delivers it. Mes-
sage my is sent by Py to P3 with timestamp ts(my) = (2,1,0). Before P;
sends another message, m3, an event happens at P;, eventually leading to
timestamping m3 with value (4,1,0). After receiving m3, process P> sends
message my to P3, with timestamp ts(mg) = (4, 3,0).

Now consider the situation shown in Figure (b). Here, we have delayed
sending message mo until after message m3 has been sent, and after the
event had taken place. It is not difficult to see that ts(my) = (4,1,0), while
ts(m4) — (2,3,0) |

15

Coordination: Logical clocks Vector clocks

Causally ordered multicasting

Observation

We can now ensure that a message Is delivered only if all causally preceding
messages have already been delivered.

Adjustment

P; increments VC;|i] only when sending a message, and P; “adjusts” VC; when
receiving a message (i.e., effectively does not change VC;|j]).

i) = VCi[i] +1
K] < VCi[K] for all k # i

16

Coordination: Logical clocks

Causally ordered multicasting

Enforcing causal communication

(1,0,0) (1,1,0)

P

Vector clocks

17

—~— ~—

As an example, consider three processes P1, P>, and P3 as shown in Figure
At local time (1,0,0), P; sends message m to the other two processes. Note that
ts(m) = (1,0,0). Its receipt and subsequent delivery by P,, will bring the logical
clock at P5 to (1,0,0), effectively indicating that it has received one message from

P1, has itself sent no message so far, and has not yet received a message from P3.

P> then decides to send m*, at updated time (1,1,0), which arrives at P3 sooner
than m.

When comparing the timestamp of m with its current time, which is (0,0, 0),
P3 concludes that it is still missing a message from P; which P, apparently had

delivered before sending m*. P3 therefore decides to postpone the delivery of m*
(and will also not adjust its local, logical clock). Later, atter m has been received
and delivered by P3, which brings its local clock to (1,0,0), P3 can deliver message
m* and also update its clock.

18

